High-temperature Breakdown Performance Improvement of Polypropylene Films Based on Micromorphology Control

In this paper, a modification method of polypropylene (PP) films is proposed for capacitors by micro doping of carboxylated cellulose nanocrystals (C-CNCs). Results prove that crystallization process of films is promoted, due to the entanglement effect of acicular ultra-structures of C-CNCs on PP mo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on dielectrics and electrical insulation Vol. 28; no. 5; pp. 1547 - 1554
Main Authors Ran, Z. Y., Du, B. X., Xiao, Meng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a modification method of polypropylene (PP) films is proposed for capacitors by micro doping of carboxylated cellulose nanocrystals (C-CNCs). Results prove that crystallization process of films is promoted, due to the entanglement effect of acicular ultra-structures of C-CNCs on PP molecular chains. With a proper doping content (0.01 wt%), the thermal properties are elevated, and the DC conductivity decreases by raising crystallinity and limiting carrier movement. Modified films possess a restricted dielectric loss at low frequencies because of regular microstructures and decreased conduction loss. Based on DC experiments at different temperatures, the breakdown strength of C-CNC/PP films shows an increase by approximately 51% at 85 °C, basically equaled to the level of pure PP at 25 °C. The mechanism is attributed to deep trap sites, which are introduced by the large crystal region and result in short free path in carrier transport. This novel PP film shows a great potential for application under thermal-electrical compound field in power systems.
ISSN:1070-9878
1558-4135
DOI:10.1109/TDEI.2021.009583