Noisy Non-Adaptive Group Testing: A (Near-)Definite Defectives Approach

The group testing problem consists of determining a small set of defective items from a larger set of items based on a number of possibly-noisy tests, and is relevant in applications such as medical testing, communication protocols, pattern matching, and more. We study the noisy version of this prob...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 66; no. 6; pp. 3775 - 3797
Main Authors Scarlett, Jonathan, Johnson, Oliver
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The group testing problem consists of determining a small set of defective items from a larger set of items based on a number of possibly-noisy tests, and is relevant in applications such as medical testing, communication protocols, pattern matching, and more. We study the noisy version of this problem, where the outcome of each standard noiseless group test is subject to independent noise, corresponding to passing the noiseless result through a binary channel. We introduce a class of algorithms that we refer to as Near-Definite Defectives (NDD), and study bounds on the required number of tests for asymptotically vanishing error probability under Bernoulli random test designs. In addition, we study algorithm-independent converse results, giving lower bounds on the required number of tests under Bernoulli test designs. Under reverse Z-channel noise, the achievable rates and converse results match in a broad range of sparsity regimes, and under Z-channel noise, the two match in a narrower range of dense/low-noise regimes. We observe that although these two channels have the same Shannon capacity when viewed as a communication channel, they can behave quite differently when it comes to group testing. Finally, we extend our analysis of these noise models to a general binary noise model (including symmetric noise), and show improvements over known existing bounds in broad scaling regimes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2020.2970184