Hierarchical Codebook-Based Multiuser Beam Training for Millimeter Wave Massive MIMO

In this article, multiuser beam training based on hierarchical codebook for millimeter wave massive multi-input multi-output is investigated, where the base station (BS) simultaneously performs beam training with multiple user equipments (UEs). For the UEs, an alternative minimization method with a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 19; no. 12; pp. 8142 - 8152
Main Authors Qi, Chenhao, Chen, Kangjian, Dobre, Octavia A., Li, Geoffrey Ye
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, multiuser beam training based on hierarchical codebook for millimeter wave massive multi-input multi-output is investigated, where the base station (BS) simultaneously performs beam training with multiple user equipments (UEs). For the UEs, an alternative minimization method with a closed-form expression (AMCF) is proposed to design the hierarchical codebook under the constant modulus constraint. To speed up the convergence of the AMCF, an initialization method based on Zadoff-Chu sequence is proposed. For the BS, a simultaneous multiuser beam training scheme based on an adaptively designed hierarchical codebook is proposed, where the codewords in the current layer of the codebook are designed according to the beam training results of the previous layer. The codewords at the BS are designed with multiple mainlobes, each covering a spatial region for one or more UEs. Simulation results verify the effectiveness of the proposed hierarchical codebook design schemes and show that the proposed multiuser beam training scheme can approach the performance of the beam sweeping but with significantly reduced beam training overhead.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2020.3019523