A Bayesian Compressive Sensing Approach to Robust Near-Field Antenna Characterization
A novel probabilistic sparsity-promoting method for robust near-field (NF) antenna characterization is proposed. It leverages on the measurements-by-design (MebD) paradigm, and it exploits some a priori information on the antenna under test (AUT) to generate an overcomplete representation basis. Acc...
Saved in:
Published in | IEEE transactions on antennas and propagation Vol. 70; no. 9; pp. 8671 - 8676 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A novel probabilistic sparsity-promoting method for robust near-field (NF) antenna characterization is proposed. It leverages on the measurements-by-design (MebD) paradigm, and it exploits some a priori information on the antenna under test (AUT) to generate an overcomplete representation basis. Accordingly, the problem at hand is reformulated in a compressive sensing (CS) framework as the retrieval of a maximally sparse distribution (with respect to the overcomplete basis) from a reduced set of measured data, and then, it is solved by means of a Bayesian strategy. Representative numerical results are presented to, also comparatively, assess the effectiveness of the proposed approach in reducing the "burden/cost" of the acquisition process and mitigate (possible) truncation errors when dealing with space-constrained probing systems. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2022.3177528 |