Microwave Photonics Programs at DARPA

Over the past ten years, DARPA has made significant investments toward advancing the field of microwave photonics. This paper reviews DARPA-funded progress in this subject over the past decade. DARPA-funded research has advanced the state-of-the-art for microwave-photonic components, including low n...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 32; no. 20; pp. 3428 - 3439
Main Authors Ridgway, Richard W., Dohrman, Carl L., Conway, Joshua A.
Format Journal Article
LanguageEnglish
Published New York IEEE 15.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Over the past ten years, DARPA has made significant investments toward advancing the field of microwave photonics. This paper reviews DARPA-funded progress in this subject over the past decade. DARPA-funded research has advanced the state-of-the-art for microwave-photonic components, including low noise laser diodes, electrooptic modulators and high power photodiodes, as well as microwave photonic link configurations, including photonic downconversion, reconfigurable optical filters and optical phase-locked loops. These investments have yielded dramatic improvements in spurious-free dynamic range (SFDR). Measured performance includes SFDRs exceeding 115 dB · Hz 2/3 at 16 GHz using broadband externally modulated links; exceeding 120 dB · Hz 2/3 at 10 GHz using sub-octave electrooptic modulators; near 135 dB · Hz 2/3 at 100 MHz using optical phased-locked loops as linear phase demodulators; and exceeding 125 dB · Hz 2/3 at 5 GHz using optical filtering, downconversion and predistortion compensation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2014.2326395