RBF Neural Network-Based Supervisor Control for Maglev Vehicles on an Elastic Track With Network Time Delay
When the electromagnetic suspension (EMS) type maglev vehicle is traveling over a track, the airgap must be maintained between the electromagnet and the track to prevent contact with that track. Because of the open-loop instability of the EMS system, the current must be actively controlled to mainta...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 18; no. 1; pp. 509 - 519 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | When the electromagnetic suspension (EMS) type maglev vehicle is traveling over a track, the airgap must be maintained between the electromagnet and the track to prevent contact with that track. Because of the open-loop instability of the EMS system, the current must be actively controlled to maintain the target airgap. However, the maglev system suffers from the strong nonlinearity, force saturation, track flexibility, and feedback signals with network time-delay, hence making the controller design even more difficult. In this article, the minimum levitation unit of the maglev vehicle system has been established. An amplitude saturation controller (ASC), which can ensure the generation of only saturated unidirectional attractive force, is thus proposed. The stability and convergence of the closed-loop signals are proven based on the Lyapunov method. Subsequently, ASC is improved based on the radial basis function neural networks, and a neural network-based supervisor controller (NNBSC) is thus designed. The ASC plays the main role in the initial stage. As the neural network learns the control trend, it will gradually transition to the neural network controller. Simulation results are provided to illustrate the specific merit of the NNBSC. The hardware experimental results of a full-scale IoT EMS maglev train are included to validate the effectiveness and robustness of the presented control method as regards to time delay. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2020.3032235 |