Design of Poly-Si Junctionless Fin-Channel FET With Quantum-Mechanical Drift-Diffusion Models for Sub-10-nm Technology Nodes

In this paper, a junctionless FinFET (JLFinFET) having polycrystalline-silicon (poly-Si) channel has been optimally designed and characterized by stringent device simulation aiming 10-nm-and-beyond Si technology node. Replacing the silicon-on-insulator platform employed for realizing the JLFETs in m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 63; no. 12; pp. 4610 - 4616
Main Authors Lee, Junsoo, Kim, Youngmin, Cho, Seongjae
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a junctionless FinFET (JLFinFET) having polycrystalline-silicon (poly-Si) channel has been optimally designed and characterized by stringent device simulation aiming 10-nm-and-beyond Si technology node. Replacing the silicon-on-insulator platform employed for realizing the JLFETs in most cases by bulk Si substrate featuring deposited oxide and poly-Si channel would warrant highly cost-effective process integration. Here, the high-κ/metal-gate technology is also adopted to enhance the gate controllability, prevent the gate leakage current, and obtain appropriate gate work function. It is demonstrated from the device simulation results with higher accuracy and credibility by multiple models, particularly including the quantum-mechanical models in drift and diffusion conductions that the poly-Si JL FinFET has the strong potential for the 10-nm-and-beyond Si CMOS technology with little performance degradation in comparison with the JL FinFET with crystalline Si channel.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2016.2614990