Adaptive Prescribed Performance Asymptotic Tracking for High-Order Odd-Rational-Power Nonlinear Systems
Practical tracking results have been reported in the literature for high-order odd-rational-power nonlinear dynamics (a chain of integrators whose power is the ratio of odd integers). Asymptotic tracking remains an open problem for such dynamics. This note gives a positive answer to this problem in...
Saved in:
Published in | IEEE transactions on automatic control Vol. 68; no. 2; pp. 1047 - 1053 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Practical tracking results have been reported in the literature for high-order odd-rational-power nonlinear dynamics (a chain of integrators whose power is the ratio of odd integers). Asymptotic tracking remains an open problem for such dynamics. This note gives a positive answer to this problem in the framework of prescribed performance control, without approximation structures (neural networks, fuzzy logic, etc.) being involved in the control design. The unknown system uncertainties are first transformed to unknown but bounded terms using barrier Lyapunov functions, and then these terms are compensated by appropriate adaptation laws. A method is also proposed to extract the control terms in a linear-like fashion during the control design, which overcomes the difficulty that virtual or actual control signals appear in a nonaffine manner. A practical poppet valve system is used to validate the effectiveness of the theoretical findings. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2022.3147271 |