Recursive Enhancement of Weak Subsurface Boundaries and Its Application to SHARAD Data
Sedimentary layers are composed of alternately deposited compositions in different periods, reflecting the geological evolution history of a planet. Orbital radar can detect sedimentary layers, but the radargram is contaminated by varying background noise levels. Traditional denoising methods, such...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 6; p. 1525 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Sedimentary layers are composed of alternately deposited compositions in different periods, reflecting the geological evolution history of a planet. Orbital radar can detect sedimentary layers, but the radargram is contaminated by varying background noise levels. Traditional denoising methods, such as median filter, have difficulty dealing with such kinds of noise. We propose a recursive signal enhancement scheme to identify weak reflections from intense background noise. Numerical experiments with synthetic data and SHARAD radargrams illustrate that the proposed method can enhance the clarity of the radar echoes and reveal delicate sedimentary structures previously buried in the background noise. The denoising result presents better horizontal continuity and higher vertical resolution compared with those of the traditional methods. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14061525 |