An Intelligent Classification Diagnosis Based on Blood Oxygen Saturation Signals for Medical Data Security Including COVID-19 in Industry 5.0

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is gradually valued due to its high prevalence, high risk, and high mortality. Alternative to the polysomnography (PSG) diagnosis, the proposed method assesses the subject's degree of illness considering the supply chain and Industry 5.0 require...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 19; no. 3; pp. 3310 - 3320
Main Authors Zhang, Mingdong, Dong, Chaoyu, Zhang, Dongming, Tseng, Ming-Lang, Wei, Jianguo
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Obstructive sleep apnea-hypopnea syndrome (OSAHS) is gradually valued due to its high prevalence, high risk, and high mortality. Alternative to the polysomnography (PSG) diagnosis, the proposed method assesses the subject's degree of illness considering the supply chain and Industry 5.0 requirement efficiently and accurately. This article uses the blood oxygen saturation (SpO 2 ) signal count of the number of apnea or hypoventilation events during the sleep of the subject, calculating the apnea-hypopnea index (AHI) and the subject's disease level. SpO 2 signals are used to extract 35-D features based on the time domain, including approximate entropy, central tendency measure, and Lempel-Ziv complexity to accelerate the diagnosis process in supply chains. The feature selection process is reduced from 35 to 7 dimensions that benefits to the implementation in the practical supply chains in Industry 5.0 by extracting the extracted features. This article applies Pearson correlation coefficient selection, based on minimum redundancy-maximum correlation algorithm selection, and a wrapper based on the backward search algorithm. The accuracy rate is 86.92%, and the specificity is 90.7% under the selected random forest classifier. A random forest classifier was used to calculate the AHI index, and a linear regression analysis was performed with the AHI index obtained from the PSG. The result reaches a 92% accuracy rate in assessing the prevalence of OSAHS, satisfying the industrial deployment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2022.3152809