Dynamic Response Analysis of a Novel Anti-Impact Pressure Balance Jack
Coal resources perform an important role in China’s energy structure. Hydraulic support is the main supporting equipment of fully mechanized mining face in coal mines. Because the hydraulic support frequently bears the impact pressure from the working face, it is very easy to cause failure of the ba...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 14; p. 5236 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Coal resources perform an important role in China’s energy structure. Hydraulic support is the main supporting equipment of fully mechanized mining face in coal mines. Because the hydraulic support frequently bears the impact pressure from the working face, it is very easy to cause failure of the balance jack. In order to solve the problem that the balance jack easily damaged by impact and improve the impact resistance of the hydraulic support, an improved fast response balance jack with multiple adaptive buffers was proposed in this paper. The energy dissipation characteristics of the balance jack were analyzed by establishing the mathematical model of the multiple buffering process of it. Based on ADAMS, the dynamic simulation model of the hydraulic support was constructed, and the mechanical response characteristics of the proposed balance jack and the traditional balance jack under different impact loads were compared and analyzed. By changing the equivalent stiffness of the novel balance jack system, the influence of different initial inflation pressure and length of the buffer cavity on the dynamic performance of the novel balance jack was discussed. The results show that compared with the traditional balance jack, the multi-adaptive response balance jack proposed in this paper can reduce the peak force of the hinge point by about 24.6% and the fluctuation frequency was also significantly reduced under the ultimate load condition at the front end of the top beam, which has better impact resistance. When the initial inflation pressure of the buffer cavity is 40~45 MPa and the initial length is less than 105 mm, a better buffer effect can be achieved. This study provides a new solution to solve the failure problem of the balance jack under the underground impact pressure and improve the safety and reliability of hydraulic support. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15145236 |