Input Design for Regularized System Identification: Stationary Conditions and Sphere Preserving Algorithm

This article studies input design of kernel-based regularization methods for linear dynamical systems, which has been formulated as a nonconvex optimization problem with the criterion being a scalar measure of the posterior covariance of the Bayesian estimate, subject to a spherical constraint on th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 68; no. 9; pp. 5714 - 5720
Main Authors Mu, Biqiang, Kong, He, Chen, Tianshi, Jiang, Bo, Wang, Lei, Wu, Junfeng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article studies input design of kernel-based regularization methods for linear dynamical systems, which has been formulated as a nonconvex optimization problem with the criterion being a scalar measure of the posterior covariance of the Bayesian estimate, subject to a spherical constraint on the input. The nonconvex nature of such input design problems poses significant challenges in deriving optimality conditions and efficient numerical algorithms. In this work, we first derive a sufficient condition for guaranteeing that a stationary point of the regularized input design problem is a global minimum. Next, we propose a spherical constraint preserving (SCP) algorithm to efficiently reach a stationary point of the design problem. Numerical simulation results show that the SCP algorithm finds the global minimum of the original design problem for all simulated cases and its average computational time is only approximately one tenth of that of the algorithms for previous methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3228200