Enhancing the irradiation resistance of L12 intermetallics by incorporating multiple principal elements through computational modeling

Ordered L12 γ′ Ni3Al intermetallics are essential strengthening components to maintain the high strength of Ni-based superalloys and recently developed high entropy alloys at elevated temperatures. Under service conditions, structural disorder is usually encountered in these intermetallics, resultin...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research and technology Vol. 30; pp. 9274 - 9284
Main Authors Huang, Shasha, Xiong, Yaoxu, Ma, Shihua, Zhang, Jun, Fu, Haijun, Xu, Biao, Kai, Ji-Jung, Zhao, Shijun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ordered L12 γ′ Ni3Al intermetallics are essential strengthening components to maintain the high strength of Ni-based superalloys and recently developed high entropy alloys at elevated temperatures. Under service conditions, structural disorder is usually encountered in these intermetallics, resulting in significant loss of their strengthening functionality. Thus, retaining the degree of order of the L12 intermetallics is vital for their long-term reliability and serviceability. In this study, atomistic simulations and rate equation analysis are employed to highlight a notable enhancement in the reordering ability of L12 intermetallics by incorporating multiple principal elements. Specifically, we examine the effects of Co and Ti addition on the irradiation-induced disordering and kinetic reordering process of L12 intermetallics. Our results reveal that the incorporation of Ti in the Al sublattice can maintain comparable disordering resistance as Ni3Al. Better yet, the introduction of Ti or Co fosters vacancy migration, which accelerates the kinetic reordering rate during the defect diffusion stage. A synergistic effect of Ti and Co in promoting kinetic reordering is also observed. Our work thus suggests a promising approach for designing irradiation-resistant multicomponent intermetallics, which can retain a high degree of structural order under irradiation with chemical disorder contributed by desirable compositions.
ISSN:2238-7854
DOI:10.1016/j.jmrt.2024.06.016