Robust Fixed-Time Sliding Mode Attitude Control of Tilt Trirotor UAV in Helicopter Mode

In this article, we address the problem of robust fixed-time attitude stabilization for tilt trirotor unmanned aerial vehicle subjects to parameter uncertainties and external disturbances. First, a novel fixed-time stable system with a faster convergence rate is proposed. Second, a nonsingular fixed...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 69; no. 10; pp. 10322 - 10332
Main Authors Yu, Li, He, Guang, Wang, Xiangke, Zhao, Shulong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2021.3118556

Cover

Loading…
More Information
Summary:In this article, we address the problem of robust fixed-time attitude stabilization for tilt trirotor unmanned aerial vehicle subjects to parameter uncertainties and external disturbances. First, a novel fixed-time stable system with a faster convergence rate is proposed. Second, a nonsingular fixed-time sliding mode surface is developed, which has better convergence performance than existing methods. Third, a continuous fast fixed-time sliding mode control law is proposed by applying the developed sliding mode surface and adaptive technique. As a result, the convergence time of the closed-loop system is bounded and independent of the initial conditions. Simulation and experiments are presented to verify that the proposed scheme can effectively and rapidly achieve attitude stabilization while maintaining high control precision and robustness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2021.3118556