Adaptive Second-Order Sliding Mode Control: A Lyapunov Approach
This article proposes an adaptive second-order sliding mode (ASOSM) controller design by means of the Lyapunov method. The notable feature of the proposed algorithm is that it only needs boundedness of the uncertainties, whereas boundedness of the derivatives of uncertainties is not demanded. Under...
Saved in:
Published in | IEEE transactions on automatic control Vol. 67; no. 10; pp. 5392 - 5399 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article proposes an adaptive second-order sliding mode (ASOSM) controller design by means of the Lyapunov method. The notable feature of the proposed algorithm is that it only needs boundedness of the uncertainties, whereas boundedness of the derivatives of uncertainties is not demanded. Under the proposed ASOSM control scheme, the gain can be dynamically tuned, which avoids gain overestimation. The finite-time stability of the closed-loop ASOSM dynamics is proved via the Lyapunov theory. Finally, the simulation results are shown to validate the theoretical analysis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2021.3115447 |