Dielectrically Modulated Source-Engineered Charge-Plasma-Based Schottky-FET as a Label-Free Biosensor

In this paper, we propose and simulate a charge-plasma (CP)-based dielectrically modulated (DM) source-engineered Schottky barrier field-effect transistor (SE-SB-FET) as a device for biomolecule sensing. The proposed device employs metal silicide (ErSi 1.7 ) as source/drain regions and Hafnium (work...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 66; no. 4; pp. 1905 - 1910
Main Authors Hafiz, Syed Adeebul, Iltesha, Ehteshamuddin, M., Loan, Sajad A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we propose and simulate a charge-plasma (CP)-based dielectrically modulated (DM) source-engineered Schottky barrier field-effect transistor (SE-SB-FET) as a device for biomolecule sensing. The proposed device employs metal silicide (ErSi 1.7 ) as source/drain regions and Hafnium (workfunction = 3.8 eV) as dual metallic source extensions. The oxide below the source extensions are etched out to create two horizontal L-shaped nanogap cavities for biomolecule detection. The presence of biomolecules is characterized by the change in dielectric constants and the associated charge densities, which, in turn, modulates the Schottky barrier (SB) width at the source-channel (metal/Si) junction, owing to the formation of an electron-CP in an undoped-Si film. A comparative analysis of the SE-SB-FET and the conventional DM-FET in terms of sensitivity has been performed as a function of dielectric constant (<inline-formula> <tex-math notation="LaTeX">{K} </tex-math></inline-formula>) and the associated charge density (<inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula>), along with the thickness (<inline-formula> <tex-math notation="LaTeX">{T}_{\textsf {C}} </tex-math></inline-formula>) and the length (<inline-formula> <tex-math notation="LaTeX">{L}_{\textsf {C}} </tex-math></inline-formula>) of the cavity. Furthermore, calibrated simulations reveal that the relative change in <inline-formula> <tex-math notation="LaTeX">{I}_{ \mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula> (sensing parameter herein calculated at <inline-formula> <tex-math notation="LaTeX">{V}_{\textsf {GS}}={V}_{\textsf {DS}}={1} </tex-math></inline-formula> V) in SE-SB-FET is much better (maximum of <inline-formula> <tex-math notation="LaTeX">{3}\times </tex-math></inline-formula> for neutral; <inline-formula> <tex-math notation="LaTeX">{2.9} \times </tex-math></inline-formula> for charged biomolecules at <inline-formula> <tex-math notation="LaTeX">\rho =-{1}\times {10}^{{11}} </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">^{-{2}} </tex-math></inline-formula>). We further observe a significant improvement in sensitivity at low temperature (<inline-formula> <tex-math notation="LaTeX">25\times </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">{K}={5} </tex-math></inline-formula>; <inline-formula> <tex-math notation="LaTeX">\rho ={0} </tex-math></inline-formula> at 100 K). Thus, SE-SB-FET biosensor provides better sensing capability for biomolecule detection when compared to the conventional DM-FET biosensor.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2019.2896695