Constrained Control of Autonomous Underwater Vehicles Based on Command Optimization and Disturbance Estimation

In this paper, a method is presented for antidisturbance constrained control of autonomous underwater vehicles subject to uncertainties and constraints. The uncertainties stem from uncertain hydrodynamic parameters, modeling errors, and unknown forces due to the ocean currents in an underwater envir...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 66; no. 5; pp. 3627 - 3635
Main Authors Peng, Zhouhua, Wang, Jiasen, Wang, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a method is presented for antidisturbance constrained control of autonomous underwater vehicles subject to uncertainties and constraints. The uncertainties stem from uncertain hydrodynamic parameters, modeling errors, and unknown forces due to the ocean currents in an underwater environment. An antidisturbance constrained controller is developed by designing a command governor and a disturbance observer. Specifically, the disturbance observer is developed to estimate the lumped disturbance composed of parametric model uncertainties, modeling errors, and unknown environmental forces. The command governor is designed for optimizing command signals in the receding horizon within the state and input constraints. The command governor is formulated as a quadratically constrained quadratic programming problem. To facilitate online implementations, a neurodynamic optimization method based on a one-layer recurrent neural network is employed for solving the quadratic optimization problem subject to inequality constraints with finite-time convergence. The efficacy of the proposed antidisturbance constrained control method for autonomous underwater vehicles is substantiated via simulations and comparisons.
AbstractList In this paper, a method is presented for antidisturbance constrained control of autonomous underwater vehicles subject to uncertainties and constraints. The uncertainties stem from uncertain hydrodynamic parameters, modeling errors, and unknown forces due to the ocean currents in an underwater environment. An antidisturbance constrained controller is developed by designing a command governor and a disturbance observer. Specifically, the disturbance observer is developed to estimate the lumped disturbance composed of parametric model uncertainties, modeling errors, and unknown environmental forces. The command governor is designed for optimizing command signals in the receding horizon within the state and input constraints. The command governor is formulated as a quadratically constrained quadratic programming problem. To facilitate online implementations, a neurodynamic optimization method based on a one-layer recurrent neural network is employed for solving the quadratic optimization problem subject to inequality constraints with finite-time convergence. The efficacy of the proposed antidisturbance constrained control method for autonomous underwater vehicles is substantiated via simulations and comparisons.
Author Peng, Zhouhua
Wang, Jiasen
Wang, Jun
Author_xml – sequence: 1
  givenname: Zhouhua
  orcidid: 0000-0003-4468-7281
  surname: Peng
  fullname: Peng, Zhouhua
  email: zhpeng@dlmu.edu.cn
  organization: School of Marine Electrical Engineering and with the Collaborative Innovation Institute of Unmanned Ships, Dalian Maritime University, Dalian, China
– sequence: 2
  givenname: Jiasen
  orcidid: 0000-0001-5687-5947
  surname: Wang
  fullname: Wang, Jiasen
  email: jwang.cs@cityu.edu.hk
  organization: Department of Computer Science and the School of Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-1305-5735
  surname: Wang
  fullname: Wang, Jun
  email: jiasewang2-c@my.cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
BookMark eNp9kD1PwzAQhi0EEqWwI7FEYk6xHdt1xlLKh4TEAqzRJTmLVKldbEcIfj1OixgYmHy6ex_b95yQQ-ssEnLO6IwxWl49P6xmnDI941oqpukBmTAp53lZCn1IJpTPdU6pUMfkJIQ1pUxIJifELp0N0UNnsc1SHb3rM2eyxRCddRs3hOzFtug_IKLPXvGta3oM2TWElHc2IZsN2DZ72sZu031B7FJzbNx0IQ6-BttgtgppuBudkiMDfcCzn3NKXm5Xz8v7_PHp7mG5eMwbXrKYsxKkqQUg6BYASl3TAlC0sjQawEBTyFoozVvJWqEVGlNQrtqiYQYUKiym5HJ_79a79wFDrNZu8DY9WXGmuKaiFDyl1D7VeBeCR1M1Xdz9czTSV4xWo9squa1Gt9WP2wTSP-DWpw3953_IxR7pEPE3rgWTc8mLb_cZiT4
CODEN ITIED6
CitedBy_id crossref_primary_10_1016_j_robot_2023_104410
crossref_primary_10_1109_ACCESS_2019_2915160
crossref_primary_10_1016_j_neucom_2019_10_043
crossref_primary_10_1109_TSMC_2019_2895499
crossref_primary_10_1007_s11071_024_10471_8
crossref_primary_10_1016_j_apor_2019_102027
crossref_primary_10_1016_j_apor_2019_102028
crossref_primary_10_1109_TIE_2020_2978713
crossref_primary_10_1016_j_conengprac_2022_105158
crossref_primary_10_1177_0142331221989121
crossref_primary_10_1109_TFUZZ_2023_3257200
crossref_primary_10_1016_j_apor_2021_102676
crossref_primary_10_1177_17298814211016174
crossref_primary_10_1002_acs_3522
crossref_primary_10_3390_app11094293
crossref_primary_10_3390_su16198367
crossref_primary_10_1109_TCYB_2019_2952913
crossref_primary_10_1109_TMECH_2019_2929216
crossref_primary_10_1007_s10846_019_01128_5
crossref_primary_10_3390_jmse12040676
crossref_primary_10_1016_j_oceaneng_2022_111939
crossref_primary_10_1109_ACCESS_2020_2977986
crossref_primary_10_3390_jmse11020321
crossref_primary_10_1016_j_oceaneng_2024_118863
crossref_primary_10_3390_jmse10020238
crossref_primary_10_1109_TAC_2024_3403031
crossref_primary_10_1177_1687814019846750
crossref_primary_10_3390_app10155287
crossref_primary_10_1002_rnc_7708
crossref_primary_10_1016_j_oceaneng_2019_106501
crossref_primary_10_1177_0142331219866517
crossref_primary_10_1016_j_oceaneng_2021_109071
crossref_primary_10_1109_TIE_2019_2914631
crossref_primary_10_1049_iet_cta_2019_0604
crossref_primary_10_1109_TCST_2020_2998798
crossref_primary_10_1016_j_ijnaoe_2021_08_003
crossref_primary_10_1109_ACCESS_2019_2900998
crossref_primary_10_1007_s11071_022_08198_5
crossref_primary_10_1007_s40313_021_00859_x
crossref_primary_10_1109_ACCESS_2019_2911194
crossref_primary_10_1007_s40435_022_01052_x
crossref_primary_10_1109_COMST_2021_3059998
crossref_primary_10_1002_rnc_5096
crossref_primary_10_1109_TSMC_2019_2944521
crossref_primary_10_1109_TNNLS_2021_3093330
crossref_primary_10_1109_ACCESS_2020_2974526
crossref_primary_10_1016_j_apor_2019_01_022
crossref_primary_10_1016_j_isatra_2022_11_014
crossref_primary_10_1016_j_oceaneng_2023_114813
crossref_primary_10_1007_s40815_019_00719_6
crossref_primary_10_1002_rnc_5890
crossref_primary_10_1109_TIE_2019_2913810
crossref_primary_10_1016_j_oceaneng_2023_114635
crossref_primary_10_1007_s11071_021_06816_2
crossref_primary_10_1016_j_oceaneng_2021_110232
crossref_primary_10_1016_j_oceaneng_2022_112731
crossref_primary_10_1109_TFUZZ_2022_3157393
crossref_primary_10_3390_jmse10050592
crossref_primary_10_3390_jmse11040710
crossref_primary_10_1016_j_sysconle_2022_105142
crossref_primary_10_1007_s00521_021_06476_8
crossref_primary_10_1016_j_oceaneng_2024_119372
crossref_primary_10_1049_iet_cta_2020_0706
crossref_primary_10_1016_j_oceaneng_2020_107901
crossref_primary_10_1109_JSEN_2023_3287600
crossref_primary_10_1109_TSMC_2024_3452122
crossref_primary_10_1177_1729881419831584
crossref_primary_10_1016_j_cja_2020_05_008
crossref_primary_10_1109_TSMC_2023_3256371
crossref_primary_10_1016_j_oceaneng_2021_110104
crossref_primary_10_3390_jmse12030363
crossref_primary_10_1109_TSMC_2020_3048733
crossref_primary_10_1016_j_oceaneng_2022_113495
crossref_primary_10_1007_s40815_019_00663_5
crossref_primary_10_1016_j_apor_2019_02_003
crossref_primary_10_1016_j_oceaneng_2024_117137
crossref_primary_10_1109_TCYB_2021_3074396
crossref_primary_10_1016_j_apor_2020_102486
crossref_primary_10_1016_j_neucom_2021_09_062
crossref_primary_10_1109_TVT_2024_3457590
crossref_primary_10_1109_TSMC_2022_3213477
crossref_primary_10_1016_j_apor_2019_02_016
crossref_primary_10_1016_j_oceaneng_2022_111342
crossref_primary_10_1080_00207179_2020_1779957
crossref_primary_10_1109_TII_2020_3036665
crossref_primary_10_1109_TSMC_2019_2896662
crossref_primary_10_1109_TIM_2022_3186056
crossref_primary_10_1016_j_oceaneng_2024_116757
crossref_primary_10_1080_21642583_2018_1544511
crossref_primary_10_1016_j_neucom_2023_02_020
crossref_primary_10_1016_j_oceaneng_2022_110530
crossref_primary_10_1155_2018_4154670
crossref_primary_10_1109_ACCESS_2024_3412816
crossref_primary_10_1109_JETCAS_2023_3277544
crossref_primary_10_1109_TIE_2020_3013790
crossref_primary_10_1109_TCYB_2019_2914717
crossref_primary_10_1016_j_conengprac_2021_104785
crossref_primary_10_1080_00207179_2021_2005828
crossref_primary_10_1109_TNNLS_2019_2927595
crossref_primary_10_1007_s11432_019_2679_5
crossref_primary_10_1016_j_oceaneng_2021_109545
crossref_primary_10_1007_s13344_020_0063_z
crossref_primary_10_1016_j_oceaneng_2020_107242
crossref_primary_10_1109_TIE_2022_3194637
crossref_primary_10_1109_TCYB_2020_3001581
crossref_primary_10_1016_j_oceaneng_2023_113757
crossref_primary_10_1109_TII_2019_2923664
crossref_primary_10_1016_j_oceaneng_2021_109661
crossref_primary_10_1109_TNNLS_2021_3056585
crossref_primary_10_1109_TFUZZ_2022_3216103
crossref_primary_10_1016_j_isatra_2022_07_006
crossref_primary_10_1016_j_engappai_2019_06_021
crossref_primary_10_1109_TSMC_2019_2901277
crossref_primary_10_1016_j_oceaneng_2019_106309
crossref_primary_10_1109_ACCESS_2025_3539374
crossref_primary_10_1109_TIE_2018_2885726
crossref_primary_10_1016_j_oceaneng_2020_107627
crossref_primary_10_1109_TVT_2024_3380913
crossref_primary_10_1109_TFUZZ_2020_2967294
crossref_primary_10_1016_j_neucom_2020_12_036
crossref_primary_10_1109_TFUZZ_2022_3191087
crossref_primary_10_1109_TVT_2023_3249832
crossref_primary_10_1080_00207179_2022_2038391
crossref_primary_10_1007_s12555_018_0751_0
crossref_primary_10_1109_TCYB_2019_2951067
crossref_primary_10_1109_TCSI_2020_3032128
crossref_primary_10_1080_00207179_2018_1558285
crossref_primary_10_1109_TSMC_2019_2896382
crossref_primary_10_1016_j_oceaneng_2019_04_077
crossref_primary_10_1016_j_oceaneng_2023_113864
crossref_primary_10_1109_TIE_2022_3140516
crossref_primary_10_1109_ACCESS_2019_2903833
crossref_primary_10_1177_0142331221994410
crossref_primary_10_3390_drones8110672
crossref_primary_10_1007_s12555_020_0582_7
crossref_primary_10_1016_j_oceaneng_2023_115882
crossref_primary_10_1109_TNNLS_2020_3027471
crossref_primary_10_1109_TII_2023_3233972
crossref_primary_10_1016_j_apor_2019_06_008
crossref_primary_10_1109_TNNLS_2018_2876685
crossref_primary_10_1007_s40815_019_00702_1
crossref_primary_10_1007_s11071_022_07618_w
crossref_primary_10_1109_TNNLS_2021_3100147
crossref_primary_10_1016_j_arcontrol_2022_07_001
crossref_primary_10_1016_j_oceaneng_2022_110748
crossref_primary_10_1109_JLT_2023_3273948
crossref_primary_10_1016_j_engappai_2019_103382
crossref_primary_10_1109_TVT_2019_2957529
crossref_primary_10_1016_j_oceaneng_2022_111672
crossref_primary_10_1109_TIE_2020_3000120
crossref_primary_10_1016_j_ijnaoe_2021_11_005
crossref_primary_10_1016_j_oceaneng_2023_115379
crossref_primary_10_1109_ACCESS_2019_2931459
crossref_primary_10_1080_00207721_2023_2301040
crossref_primary_10_1109_TCYB_2019_2915664
crossref_primary_10_1109_TITS_2022_3216808
crossref_primary_10_1016_j_isatra_2020_01_017
crossref_primary_10_3390_jmse11040805
crossref_primary_10_1109_TMECH_2020_3016757
crossref_primary_10_1109_TSMC_2019_2946248
crossref_primary_10_3390_electronics10232886
crossref_primary_10_1109_TII_2020_2971356
crossref_primary_10_1016_j_isatra_2024_03_010
crossref_primary_10_1016_j_neucom_2019_06_017
crossref_primary_10_1109_TCYB_2018_2883335
crossref_primary_10_1016_j_ast_2019_105572
crossref_primary_10_1016_j_isatra_2018_12_051
crossref_primary_10_1016_j_oceaneng_2023_113900
crossref_primary_10_1109_TIM_2023_3273685
Cites_doi 10.1109/TMECH.2017.2756110
10.1109/TMECH.2016.2542362
10.1109/JOE.2012.2201797
10.1016/j.neucom.2015.11.017
10.2514/6.2013-4932
10.1109/TIE.2017.2772196
10.1109/TNNLS.2017.2696582
10.1109/TSMC.2017.2697447
10.1109/TCYB.2016.2554621
10.1007/s11071-014-1277-5
10.1016/j.oceaneng.2010.07.006
10.1109/TCYB.2015.2475376
10.1016/j.oceaneng.2004.04.006
10.1016/j.automatica.2017.02.005
10.1109/TIE.2016.2515073
10.1109/TAC.2010.2049522
10.1109/TIE.2016.2589921
10.1109/TIE.2016.2574301
10.1109/TMECH.2017.2660528
10.1109/TCST.2017.2699167
10.1016/j.ins.2015.04.025
10.1016/j.oceaneng.2016.06.041
10.1109/TIE.2016.2544718
10.1016/j.neucom.2012.12.026
10.1109/TIE.2017.2779442
10.1109/TSMCB.2011.2140395
10.1016/j.automatica.2013.08.003
10.1109/TCSI.2016.2605685
10.1109/TCST.2018.2789440
10.1016/j.cor.2016.09.017
10.1016/j.oceaneng.2009.10.004
10.1109/TRO.2014.2305791
10.1109/TCYB.2018.2806387
10.1109/TMECH.2016.2618901
10.1109/TCST.2017.2728518
10.1109/TCYB.2016.2600263
10.1016/j.automatica.2016.08.013
10.1002/9781119994138
10.1109/TNNLS.2017.2784365
10.1109/TNNLS.2015.2411671
10.1109/TVT.2016.2604759
10.1109/TCST.2010.2090526
10.1016/j.automatica.2012.11.026
10.1109/TIE.2017.2652346
10.1109/TMECH.2016.2522759
10.1109/TFUZZ.2016.2633323
10.1109/TMECH.2016.2587288
10.1109/TNNLS.2018.2808700
10.1016/j.oceaneng.2015.02.002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2018.2856180
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 3635
ExternalDocumentID 10_1109_TIE_2018_2856180
8415752
Genre orig-research
GrantInformation_xml – fundername: Research Grants Council of the Hong Kong Special Administrative Region of China
  grantid: 14207614; 11208517
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3132016313; 3132018306
– fundername: National Natural Science Foundation of China
  grantid: 51579023; 61673081
  funderid: 10.13039/501100001809
– fundername: Innovative Talents in Universities of Liaoning Province
  grantid: LR2017014
– fundername: High Level Talent Innovation and Entrepreneurship Program of Dalian
  grantid: 2016RQ036
– fundername: National Natural Science Foundation of China
  grantid: 61673330
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-19a5fb4aea8daaa98b03ae4d59f8aafac35b4682d51d486eff3026d3c1fa6e6e3
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:21:19 EDT 2025
Tue Jul 01 00:16:27 EDT 2025
Thu Apr 24 23:07:12 EDT 2025
Wed Aug 27 02:59:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-19a5fb4aea8daaa98b03ae4d59f8aafac35b4682d51d486eff3026d3c1fa6e6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5687-5947
0000-0002-1305-5735
0000-0003-4468-7281
PQID 2162804942
PQPubID 85464
PageCount 9
ParticipantIDs proquest_journals_2162804942
crossref_citationtrail_10_1109_TIE_2018_2856180
crossref_primary_10_1109_TIE_2018_2856180
ieee_primary_8415752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
zhu (ref49) 2003
ref16
krstic (ref45) 1995
ref19
ref18
liu (ref46) 2011; 41
ref51
ref50
ref48
ref47
ref42
ref44
ref43
ref8
ref7
ref9
ref4
shi (ref27) 2016; 22
ref3
ref6
kim (ref41) 2010; 55
ref5
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
wang (ref37) 2014; 77
References_xml – ident: ref24
  doi: 10.1109/TMECH.2017.2756110
– ident: ref43
  doi: 10.1109/TMECH.2016.2542362
– ident: ref16
  doi: 10.1109/JOE.2012.2201797
– ident: ref17
  doi: 10.1016/j.neucom.2015.11.017
– volume: 22
  start-page: 1163
  year: 2016
  ident: ref27
  article-title: Integrated path planning and tracking control of an AUV: A unified receding horizon optimization approach
  publication-title: IEEE/ASME Trans Mechatronics
– ident: ref32
  doi: 10.2514/6.2013-4932
– ident: ref51
  doi: 10.1109/TIE.2017.2772196
– ident: ref33
  doi: 10.1109/TNNLS.2017.2696582
– ident: ref12
  doi: 10.1109/TSMC.2017.2697447
– ident: ref21
  doi: 10.1109/TCYB.2016.2554621
– volume: 77
  start-page: 107
  year: 2014
  ident: ref37
  article-title: Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1277-5
– ident: ref10
  doi: 10.1016/j.oceaneng.2010.07.006
– ident: ref9
  doi: 10.1109/TCYB.2015.2475376
– ident: ref4
  doi: 10.1016/j.oceaneng.2004.04.006
– ident: ref22
  doi: 10.1016/j.automatica.2017.02.005
– ident: ref13
  doi: 10.1109/TIE.2016.2515073
– volume: 55
  start-page: 1905
  year: 2010
  ident: ref41
  article-title: Disturbance observer for estimating higher order disturbances in time series expansion
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2010.2049522
– ident: ref29
  doi: 10.1109/TIE.2016.2589921
– ident: ref35
  doi: 10.1109/TIE.2016.2574301
– ident: ref2
  doi: 10.1109/TMECH.2017.2660528
– ident: ref20
  doi: 10.1109/TCST.2017.2699167
– ident: ref7
  doi: 10.1016/j.ins.2015.04.025
– ident: ref3
  doi: 10.1016/j.oceaneng.2016.06.041
– ident: ref34
  doi: 10.1109/TIE.2016.2544718
– ident: ref8
  doi: 10.1016/j.neucom.2012.12.026
– ident: ref26
  doi: 10.1109/TIE.2017.2779442
– volume: 41
  start-page: 1323
  year: 2011
  ident: ref46
  article-title: A one-layer recurrent neural network for constrained nonsmooth optimization
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2011.2140395
– ident: ref39
  doi: 10.1016/j.automatica.2013.08.003
– ident: ref47
  doi: 10.1109/TCSI.2016.2605685
– ident: ref30
  doi: 10.1109/TCST.2018.2789440
– ident: ref11
  doi: 10.1016/j.cor.2016.09.017
– ident: ref25
  doi: 10.1016/j.oceaneng.2009.10.004
– ident: ref38
  doi: 10.1109/TRO.2014.2305791
– ident: ref50
  doi: 10.1109/TCYB.2018.2806387
– ident: ref6
  doi: 10.1109/TMECH.2016.2618901
– ident: ref23
  doi: 10.1109/TCST.2017.2728518
– ident: ref18
  doi: 10.1109/TCYB.2016.2600263
– ident: ref31
  doi: 10.1016/j.automatica.2016.08.013
– ident: ref1
  doi: 10.1002/9781119994138
– ident: ref52
  doi: 10.1109/TNNLS.2017.2784365
– ident: ref15
  doi: 10.1109/TNNLS.2015.2411671
– ident: ref44
  doi: 10.1109/TVT.2016.2604759
– ident: ref19
  doi: 10.1109/TCST.2010.2090526
– ident: ref40
  doi: 10.1016/j.automatica.2012.11.026
– start-page: 1062
  year: 2003
  ident: ref49
  article-title: FPGA implementations of neural networks-A survey of a decade of progress
  publication-title: I
– year: 1995
  ident: ref45
  publication-title: Nonlinear and Adaptive Control Design
– ident: ref36
  doi: 10.1109/TIE.2017.2652346
– ident: ref42
  doi: 10.1109/TMECH.2016.2522759
– ident: ref48
  doi: 10.1109/TFUZZ.2016.2633323
– ident: ref28
  doi: 10.1109/TMECH.2016.2587288
– ident: ref14
  doi: 10.1109/TNNLS.2018.2808700
– ident: ref5
  doi: 10.1016/j.oceaneng.2015.02.002
SSID ssj0014515
Score 2.6503024
Snippet In this paper, a method is presented for antidisturbance constrained control of autonomous underwater vehicles subject to uncertainties and constraints. The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3627
SubjectTerms Autonomous underwater vehicles
Autonomous underwater vehicles (AUVs)
command governor (CG)
Computer simulation
Constraints
Control systems design
disturbance observer (DO)
Disturbance observers
Environment models
Estimation
finite-time convergence
Governors
Kinetic theory
Military technology
Neurodynamics
Ocean currents
Ocean models
Oceans
one-layer recurrent neural network
Optimization
Parameter uncertainty
Parametric statistics
Quadratic programming
receding horizon optimization
Recurrent neural networks
Uncertainty
Title Constrained Control of Autonomous Underwater Vehicles Based on Command Optimization and Disturbance Estimation
URI https://ieeexplore.ieee.org/document/8415752
https://www.proquest.com/docview/2162804942
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_Tkx78muL8Igcvgt2WtEnTox-TKUwvm-xW0uQFQW1ltgj-9SZpN4aKeCslKSm_l_eRvPd7CJ1SwZUmxgRANASRCpNAkjgOYmKEO4yPmXYH-qN7PpxEd1M2baHzRS0MAPjkM-i6R3-XrwtVuaOynrDWJmZW4a7YwK2u1VrcGESs7lZAHWOsDfrmV5L9pDe-HbgcLtGlwnoLjgByyQT5nio_FLG3LjebaDRfV51U8tytyqyrPr9RNv534Vtoo3Ez8UUtF9uoBfkOWl8iH2yj3PXq9B0iQOOrOmMdFwZfVKUrdCiqd-ybIn1Yb3SGH-HJJ9DhS2v2NC5y7EpLZK7xg1U6r001J3Yvrq3kVLPMiRMeWA1SF0fuosnNYHw1DJruC4GiCSkDkkhmskiCFFpKmYisH0qINEuMkNJIFbIs4oJqRnQkOBgT2nhOh4oYyYFDuIdW8yKHfYQzBsJwRRUTKmJSWa-eSK6tLxZSlWnZQb05IKlqqMnd_7-kPkTpJ6mFMHUQpg2EHXS2mPFW03L8MbbtEFmMa8DooKM55mmzb99TSjgVjjKHHvw-6xCt2W8ndcrjEVotZxUcW7ekzE68PH4BJ0LhNg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hegAOtLzUpbT4wAWJ7K6d2HGOlC5aHguXBXGLHHsspLYJ2k2E1F9f28muEKCqtyiyFUffeGbsmfkG4IhJoQ21NkJqMEp0nEWKpmmUUiv9ZXzKjb_Qn9yI8V1y-cAfVuBkWQuDiCH5DPv-McTyTaUbf1U2kM7apNwp3A_O7nPaVmstYwYJb_sVMM8Z6459i6DkMBtML0Y-i0v2mXT-gqeAfGGEQleVN6o42JfzjzBZrKxNK_nZb-qir_-8Im3836V_gs3O0SSnrWRswQqW27Dxgn5wB0rfrTP0iEBDztqcdVJZctrUvtShauYktEV6dv7ojNzjY0ihI9-d4TOkKokvLlGlIbdO7fzu6jmJf_HDyU4zK7xAkZHTIW155C7cnY-mZ-Oo678QaZbROqKZ4rZIFCpplFKZLIaxwsTwzEqlrNIxLxIhmeHUJFKgtbE70ZlYU6sECoz3YLWsSvwMpOAordBMc6kTrrTz66kSxnljMdOFUT0YLADJdUdO7v__Vx4OKcMsdxDmHsK8g7AHx8sZTy0xxz_G7nhEluM6MHpwsMA873buPGdUMOlJc9j--7MOYW08nVzn1xc3V19g3X0naxMgD2C1njX41TkpdfEtyOZfCsjkfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Control+of+Autonomous+Underwater+Vehicles+Based+on+Command+Optimization+and+Disturbance+Estimation&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Peng%2C+Zhouhua&rft.au=Wang%2C+Jiasen&rft.au=Wang%2C+Jun&rft.date=2019-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=66&rft.issue=5&rft.spage=3627&rft_id=info:doi/10.1109%2FTIE.2018.2856180&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon