Constrained Control of Autonomous Underwater Vehicles Based on Command Optimization and Disturbance Estimation
In this paper, a method is presented for antidisturbance constrained control of autonomous underwater vehicles subject to uncertainties and constraints. The uncertainties stem from uncertain hydrodynamic parameters, modeling errors, and unknown forces due to the ocean currents in an underwater envir...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 66; no. 5; pp. 3627 - 3635 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a method is presented for antidisturbance constrained control of autonomous underwater vehicles subject to uncertainties and constraints. The uncertainties stem from uncertain hydrodynamic parameters, modeling errors, and unknown forces due to the ocean currents in an underwater environment. An antidisturbance constrained controller is developed by designing a command governor and a disturbance observer. Specifically, the disturbance observer is developed to estimate the lumped disturbance composed of parametric model uncertainties, modeling errors, and unknown environmental forces. The command governor is designed for optimizing command signals in the receding horizon within the state and input constraints. The command governor is formulated as a quadratically constrained quadratic programming problem. To facilitate online implementations, a neurodynamic optimization method based on a one-layer recurrent neural network is employed for solving the quadratic optimization problem subject to inequality constraints with finite-time convergence. The efficacy of the proposed antidisturbance constrained control method for autonomous underwater vehicles is substantiated via simulations and comparisons. |
---|---|
AbstractList | In this paper, a method is presented for antidisturbance constrained control of autonomous underwater vehicles subject to uncertainties and constraints. The uncertainties stem from uncertain hydrodynamic parameters, modeling errors, and unknown forces due to the ocean currents in an underwater environment. An antidisturbance constrained controller is developed by designing a command governor and a disturbance observer. Specifically, the disturbance observer is developed to estimate the lumped disturbance composed of parametric model uncertainties, modeling errors, and unknown environmental forces. The command governor is designed for optimizing command signals in the receding horizon within the state and input constraints. The command governor is formulated as a quadratically constrained quadratic programming problem. To facilitate online implementations, a neurodynamic optimization method based on a one-layer recurrent neural network is employed for solving the quadratic optimization problem subject to inequality constraints with finite-time convergence. The efficacy of the proposed antidisturbance constrained control method for autonomous underwater vehicles is substantiated via simulations and comparisons. |
Author | Peng, Zhouhua Wang, Jiasen Wang, Jun |
Author_xml | – sequence: 1 givenname: Zhouhua orcidid: 0000-0003-4468-7281 surname: Peng fullname: Peng, Zhouhua email: zhpeng@dlmu.edu.cn organization: School of Marine Electrical Engineering and with the Collaborative Innovation Institute of Unmanned Ships, Dalian Maritime University, Dalian, China – sequence: 2 givenname: Jiasen orcidid: 0000-0001-5687-5947 surname: Wang fullname: Wang, Jiasen email: jwang.cs@cityu.edu.hk organization: Department of Computer Science and the School of Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong – sequence: 3 givenname: Jun orcidid: 0000-0002-1305-5735 surname: Wang fullname: Wang, Jun email: jiasewang2-c@my.cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong |
BookMark | eNp9kD1PwzAQhi0EEqWwI7FEYk6xHdt1xlLKh4TEAqzRJTmLVKldbEcIfj1OixgYmHy6ex_b95yQQ-ssEnLO6IwxWl49P6xmnDI941oqpukBmTAp53lZCn1IJpTPdU6pUMfkJIQ1pUxIJifELp0N0UNnsc1SHb3rM2eyxRCddRs3hOzFtug_IKLPXvGta3oM2TWElHc2IZsN2DZ72sZu031B7FJzbNx0IQ6-BttgtgppuBudkiMDfcCzn3NKXm5Xz8v7_PHp7mG5eMwbXrKYsxKkqQUg6BYASl3TAlC0sjQawEBTyFoozVvJWqEVGlNQrtqiYQYUKiym5HJ_79a79wFDrNZu8DY9WXGmuKaiFDyl1D7VeBeCR1M1Xdz9czTSV4xWo9squa1Gt9WP2wTSP-DWpw3953_IxR7pEPE3rgWTc8mLb_cZiT4 |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1016_j_robot_2023_104410 crossref_primary_10_1109_ACCESS_2019_2915160 crossref_primary_10_1016_j_neucom_2019_10_043 crossref_primary_10_1109_TSMC_2019_2895499 crossref_primary_10_1007_s11071_024_10471_8 crossref_primary_10_1016_j_apor_2019_102027 crossref_primary_10_1016_j_apor_2019_102028 crossref_primary_10_1109_TIE_2020_2978713 crossref_primary_10_1016_j_conengprac_2022_105158 crossref_primary_10_1177_0142331221989121 crossref_primary_10_1109_TFUZZ_2023_3257200 crossref_primary_10_1016_j_apor_2021_102676 crossref_primary_10_1177_17298814211016174 crossref_primary_10_1002_acs_3522 crossref_primary_10_3390_app11094293 crossref_primary_10_3390_su16198367 crossref_primary_10_1109_TCYB_2019_2952913 crossref_primary_10_1109_TMECH_2019_2929216 crossref_primary_10_1007_s10846_019_01128_5 crossref_primary_10_3390_jmse12040676 crossref_primary_10_1016_j_oceaneng_2022_111939 crossref_primary_10_1109_ACCESS_2020_2977986 crossref_primary_10_3390_jmse11020321 crossref_primary_10_1016_j_oceaneng_2024_118863 crossref_primary_10_3390_jmse10020238 crossref_primary_10_1109_TAC_2024_3403031 crossref_primary_10_1177_1687814019846750 crossref_primary_10_3390_app10155287 crossref_primary_10_1002_rnc_7708 crossref_primary_10_1016_j_oceaneng_2019_106501 crossref_primary_10_1177_0142331219866517 crossref_primary_10_1016_j_oceaneng_2021_109071 crossref_primary_10_1109_TIE_2019_2914631 crossref_primary_10_1049_iet_cta_2019_0604 crossref_primary_10_1109_TCST_2020_2998798 crossref_primary_10_1016_j_ijnaoe_2021_08_003 crossref_primary_10_1109_ACCESS_2019_2900998 crossref_primary_10_1007_s11071_022_08198_5 crossref_primary_10_1007_s40313_021_00859_x crossref_primary_10_1109_ACCESS_2019_2911194 crossref_primary_10_1007_s40435_022_01052_x crossref_primary_10_1109_COMST_2021_3059998 crossref_primary_10_1002_rnc_5096 crossref_primary_10_1109_TSMC_2019_2944521 crossref_primary_10_1109_TNNLS_2021_3093330 crossref_primary_10_1109_ACCESS_2020_2974526 crossref_primary_10_1016_j_apor_2019_01_022 crossref_primary_10_1016_j_isatra_2022_11_014 crossref_primary_10_1016_j_oceaneng_2023_114813 crossref_primary_10_1007_s40815_019_00719_6 crossref_primary_10_1002_rnc_5890 crossref_primary_10_1109_TIE_2019_2913810 crossref_primary_10_1016_j_oceaneng_2023_114635 crossref_primary_10_1007_s11071_021_06816_2 crossref_primary_10_1016_j_oceaneng_2021_110232 crossref_primary_10_1016_j_oceaneng_2022_112731 crossref_primary_10_1109_TFUZZ_2022_3157393 crossref_primary_10_3390_jmse10050592 crossref_primary_10_3390_jmse11040710 crossref_primary_10_1016_j_sysconle_2022_105142 crossref_primary_10_1007_s00521_021_06476_8 crossref_primary_10_1016_j_oceaneng_2024_119372 crossref_primary_10_1049_iet_cta_2020_0706 crossref_primary_10_1016_j_oceaneng_2020_107901 crossref_primary_10_1109_JSEN_2023_3287600 crossref_primary_10_1109_TSMC_2024_3452122 crossref_primary_10_1177_1729881419831584 crossref_primary_10_1016_j_cja_2020_05_008 crossref_primary_10_1109_TSMC_2023_3256371 crossref_primary_10_1016_j_oceaneng_2021_110104 crossref_primary_10_3390_jmse12030363 crossref_primary_10_1109_TSMC_2020_3048733 crossref_primary_10_1016_j_oceaneng_2022_113495 crossref_primary_10_1007_s40815_019_00663_5 crossref_primary_10_1016_j_apor_2019_02_003 crossref_primary_10_1016_j_oceaneng_2024_117137 crossref_primary_10_1109_TCYB_2021_3074396 crossref_primary_10_1016_j_apor_2020_102486 crossref_primary_10_1016_j_neucom_2021_09_062 crossref_primary_10_1109_TVT_2024_3457590 crossref_primary_10_1109_TSMC_2022_3213477 crossref_primary_10_1016_j_apor_2019_02_016 crossref_primary_10_1016_j_oceaneng_2022_111342 crossref_primary_10_1080_00207179_2020_1779957 crossref_primary_10_1109_TII_2020_3036665 crossref_primary_10_1109_TSMC_2019_2896662 crossref_primary_10_1109_TIM_2022_3186056 crossref_primary_10_1016_j_oceaneng_2024_116757 crossref_primary_10_1080_21642583_2018_1544511 crossref_primary_10_1016_j_neucom_2023_02_020 crossref_primary_10_1016_j_oceaneng_2022_110530 crossref_primary_10_1155_2018_4154670 crossref_primary_10_1109_ACCESS_2024_3412816 crossref_primary_10_1109_JETCAS_2023_3277544 crossref_primary_10_1109_TIE_2020_3013790 crossref_primary_10_1109_TCYB_2019_2914717 crossref_primary_10_1016_j_conengprac_2021_104785 crossref_primary_10_1080_00207179_2021_2005828 crossref_primary_10_1109_TNNLS_2019_2927595 crossref_primary_10_1007_s11432_019_2679_5 crossref_primary_10_1016_j_oceaneng_2021_109545 crossref_primary_10_1007_s13344_020_0063_z crossref_primary_10_1016_j_oceaneng_2020_107242 crossref_primary_10_1109_TIE_2022_3194637 crossref_primary_10_1109_TCYB_2020_3001581 crossref_primary_10_1016_j_oceaneng_2023_113757 crossref_primary_10_1109_TII_2019_2923664 crossref_primary_10_1016_j_oceaneng_2021_109661 crossref_primary_10_1109_TNNLS_2021_3056585 crossref_primary_10_1109_TFUZZ_2022_3216103 crossref_primary_10_1016_j_isatra_2022_07_006 crossref_primary_10_1016_j_engappai_2019_06_021 crossref_primary_10_1109_TSMC_2019_2901277 crossref_primary_10_1016_j_oceaneng_2019_106309 crossref_primary_10_1109_ACCESS_2025_3539374 crossref_primary_10_1109_TIE_2018_2885726 crossref_primary_10_1016_j_oceaneng_2020_107627 crossref_primary_10_1109_TVT_2024_3380913 crossref_primary_10_1109_TFUZZ_2020_2967294 crossref_primary_10_1016_j_neucom_2020_12_036 crossref_primary_10_1109_TFUZZ_2022_3191087 crossref_primary_10_1109_TVT_2023_3249832 crossref_primary_10_1080_00207179_2022_2038391 crossref_primary_10_1007_s12555_018_0751_0 crossref_primary_10_1109_TCYB_2019_2951067 crossref_primary_10_1109_TCSI_2020_3032128 crossref_primary_10_1080_00207179_2018_1558285 crossref_primary_10_1109_TSMC_2019_2896382 crossref_primary_10_1016_j_oceaneng_2019_04_077 crossref_primary_10_1016_j_oceaneng_2023_113864 crossref_primary_10_1109_TIE_2022_3140516 crossref_primary_10_1109_ACCESS_2019_2903833 crossref_primary_10_1177_0142331221994410 crossref_primary_10_3390_drones8110672 crossref_primary_10_1007_s12555_020_0582_7 crossref_primary_10_1016_j_oceaneng_2023_115882 crossref_primary_10_1109_TNNLS_2020_3027471 crossref_primary_10_1109_TII_2023_3233972 crossref_primary_10_1016_j_apor_2019_06_008 crossref_primary_10_1109_TNNLS_2018_2876685 crossref_primary_10_1007_s40815_019_00702_1 crossref_primary_10_1007_s11071_022_07618_w crossref_primary_10_1109_TNNLS_2021_3100147 crossref_primary_10_1016_j_arcontrol_2022_07_001 crossref_primary_10_1016_j_oceaneng_2022_110748 crossref_primary_10_1109_JLT_2023_3273948 crossref_primary_10_1016_j_engappai_2019_103382 crossref_primary_10_1109_TVT_2019_2957529 crossref_primary_10_1016_j_oceaneng_2022_111672 crossref_primary_10_1109_TIE_2020_3000120 crossref_primary_10_1016_j_ijnaoe_2021_11_005 crossref_primary_10_1016_j_oceaneng_2023_115379 crossref_primary_10_1109_ACCESS_2019_2931459 crossref_primary_10_1080_00207721_2023_2301040 crossref_primary_10_1109_TCYB_2019_2915664 crossref_primary_10_1109_TITS_2022_3216808 crossref_primary_10_1016_j_isatra_2020_01_017 crossref_primary_10_3390_jmse11040805 crossref_primary_10_1109_TMECH_2020_3016757 crossref_primary_10_1109_TSMC_2019_2946248 crossref_primary_10_3390_electronics10232886 crossref_primary_10_1109_TII_2020_2971356 crossref_primary_10_1016_j_isatra_2024_03_010 crossref_primary_10_1016_j_neucom_2019_06_017 crossref_primary_10_1109_TCYB_2018_2883335 crossref_primary_10_1016_j_ast_2019_105572 crossref_primary_10_1016_j_isatra_2018_12_051 crossref_primary_10_1016_j_oceaneng_2023_113900 crossref_primary_10_1109_TIM_2023_3273685 |
Cites_doi | 10.1109/TMECH.2017.2756110 10.1109/TMECH.2016.2542362 10.1109/JOE.2012.2201797 10.1016/j.neucom.2015.11.017 10.2514/6.2013-4932 10.1109/TIE.2017.2772196 10.1109/TNNLS.2017.2696582 10.1109/TSMC.2017.2697447 10.1109/TCYB.2016.2554621 10.1007/s11071-014-1277-5 10.1016/j.oceaneng.2010.07.006 10.1109/TCYB.2015.2475376 10.1016/j.oceaneng.2004.04.006 10.1016/j.automatica.2017.02.005 10.1109/TIE.2016.2515073 10.1109/TAC.2010.2049522 10.1109/TIE.2016.2589921 10.1109/TIE.2016.2574301 10.1109/TMECH.2017.2660528 10.1109/TCST.2017.2699167 10.1016/j.ins.2015.04.025 10.1016/j.oceaneng.2016.06.041 10.1109/TIE.2016.2544718 10.1016/j.neucom.2012.12.026 10.1109/TIE.2017.2779442 10.1109/TSMCB.2011.2140395 10.1016/j.automatica.2013.08.003 10.1109/TCSI.2016.2605685 10.1109/TCST.2018.2789440 10.1016/j.cor.2016.09.017 10.1016/j.oceaneng.2009.10.004 10.1109/TRO.2014.2305791 10.1109/TCYB.2018.2806387 10.1109/TMECH.2016.2618901 10.1109/TCST.2017.2728518 10.1109/TCYB.2016.2600263 10.1016/j.automatica.2016.08.013 10.1002/9781119994138 10.1109/TNNLS.2017.2784365 10.1109/TNNLS.2015.2411671 10.1109/TVT.2016.2604759 10.1109/TCST.2010.2090526 10.1016/j.automatica.2012.11.026 10.1109/TIE.2017.2652346 10.1109/TMECH.2016.2522759 10.1109/TFUZZ.2016.2633323 10.1109/TMECH.2016.2587288 10.1109/TNNLS.2018.2808700 10.1016/j.oceaneng.2015.02.002 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2018.2856180 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 3635 |
ExternalDocumentID | 10_1109_TIE_2018_2856180 8415752 |
Genre | orig-research |
GrantInformation_xml | – fundername: Research Grants Council of the Hong Kong Special Administrative Region of China grantid: 14207614; 11208517 – fundername: Fundamental Research Funds for the Central Universities grantid: 3132016313; 3132018306 – fundername: National Natural Science Foundation of China grantid: 51579023; 61673081 funderid: 10.13039/501100001809 – fundername: Innovative Talents in Universities of Liaoning Province grantid: LR2017014 – fundername: High Level Talent Innovation and Entrepreneurship Program of Dalian grantid: 2016RQ036 – fundername: National Natural Science Foundation of China grantid: 61673330 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-19a5fb4aea8daaa98b03ae4d59f8aafac35b4682d51d486eff3026d3c1fa6e6e3 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Mon Jun 30 10:21:19 EDT 2025 Tue Jul 01 00:16:27 EDT 2025 Thu Apr 24 23:07:12 EDT 2025 Wed Aug 27 02:59:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-19a5fb4aea8daaa98b03ae4d59f8aafac35b4682d51d486eff3026d3c1fa6e6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5687-5947 0000-0002-1305-5735 0000-0003-4468-7281 |
PQID | 2162804942 |
PQPubID | 85464 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2162804942 crossref_citationtrail_10_1109_TIE_2018_2856180 crossref_primary_10_1109_TIE_2018_2856180 ieee_primary_8415752 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 ref17 zhu (ref49) 2003 ref16 krstic (ref45) 1995 ref19 ref18 liu (ref46) 2011; 41 ref51 ref50 ref48 ref47 ref42 ref44 ref43 ref8 ref7 ref9 ref4 shi (ref27) 2016; 22 ref3 ref6 kim (ref41) 2010; 55 ref5 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 wang (ref37) 2014; 77 |
References_xml | – ident: ref24 doi: 10.1109/TMECH.2017.2756110 – ident: ref43 doi: 10.1109/TMECH.2016.2542362 – ident: ref16 doi: 10.1109/JOE.2012.2201797 – ident: ref17 doi: 10.1016/j.neucom.2015.11.017 – volume: 22 start-page: 1163 year: 2016 ident: ref27 article-title: Integrated path planning and tracking control of an AUV: A unified receding horizon optimization approach publication-title: IEEE/ASME Trans Mechatronics – ident: ref32 doi: 10.2514/6.2013-4932 – ident: ref51 doi: 10.1109/TIE.2017.2772196 – ident: ref33 doi: 10.1109/TNNLS.2017.2696582 – ident: ref12 doi: 10.1109/TSMC.2017.2697447 – ident: ref21 doi: 10.1109/TCYB.2016.2554621 – volume: 77 start-page: 107 year: 2014 ident: ref37 article-title: Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation publication-title: Nonlinear Dyn doi: 10.1007/s11071-014-1277-5 – ident: ref10 doi: 10.1016/j.oceaneng.2010.07.006 – ident: ref9 doi: 10.1109/TCYB.2015.2475376 – ident: ref4 doi: 10.1016/j.oceaneng.2004.04.006 – ident: ref22 doi: 10.1016/j.automatica.2017.02.005 – ident: ref13 doi: 10.1109/TIE.2016.2515073 – volume: 55 start-page: 1905 year: 2010 ident: ref41 article-title: Disturbance observer for estimating higher order disturbances in time series expansion publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2010.2049522 – ident: ref29 doi: 10.1109/TIE.2016.2589921 – ident: ref35 doi: 10.1109/TIE.2016.2574301 – ident: ref2 doi: 10.1109/TMECH.2017.2660528 – ident: ref20 doi: 10.1109/TCST.2017.2699167 – ident: ref7 doi: 10.1016/j.ins.2015.04.025 – ident: ref3 doi: 10.1016/j.oceaneng.2016.06.041 – ident: ref34 doi: 10.1109/TIE.2016.2544718 – ident: ref8 doi: 10.1016/j.neucom.2012.12.026 – ident: ref26 doi: 10.1109/TIE.2017.2779442 – volume: 41 start-page: 1323 year: 2011 ident: ref46 article-title: A one-layer recurrent neural network for constrained nonsmooth optimization publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2011.2140395 – ident: ref39 doi: 10.1016/j.automatica.2013.08.003 – ident: ref47 doi: 10.1109/TCSI.2016.2605685 – ident: ref30 doi: 10.1109/TCST.2018.2789440 – ident: ref11 doi: 10.1016/j.cor.2016.09.017 – ident: ref25 doi: 10.1016/j.oceaneng.2009.10.004 – ident: ref38 doi: 10.1109/TRO.2014.2305791 – ident: ref50 doi: 10.1109/TCYB.2018.2806387 – ident: ref6 doi: 10.1109/TMECH.2016.2618901 – ident: ref23 doi: 10.1109/TCST.2017.2728518 – ident: ref18 doi: 10.1109/TCYB.2016.2600263 – ident: ref31 doi: 10.1016/j.automatica.2016.08.013 – ident: ref1 doi: 10.1002/9781119994138 – ident: ref52 doi: 10.1109/TNNLS.2017.2784365 – ident: ref15 doi: 10.1109/TNNLS.2015.2411671 – ident: ref44 doi: 10.1109/TVT.2016.2604759 – ident: ref19 doi: 10.1109/TCST.2010.2090526 – ident: ref40 doi: 10.1016/j.automatica.2012.11.026 – start-page: 1062 year: 2003 ident: ref49 article-title: FPGA implementations of neural networks-A survey of a decade of progress publication-title: I – year: 1995 ident: ref45 publication-title: Nonlinear and Adaptive Control Design – ident: ref36 doi: 10.1109/TIE.2017.2652346 – ident: ref42 doi: 10.1109/TMECH.2016.2522759 – ident: ref48 doi: 10.1109/TFUZZ.2016.2633323 – ident: ref28 doi: 10.1109/TMECH.2016.2587288 – ident: ref14 doi: 10.1109/TNNLS.2018.2808700 – ident: ref5 doi: 10.1016/j.oceaneng.2015.02.002 |
SSID | ssj0014515 |
Score | 2.6503024 |
Snippet | In this paper, a method is presented for antidisturbance constrained control of autonomous underwater vehicles subject to uncertainties and constraints. The... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3627 |
SubjectTerms | Autonomous underwater vehicles Autonomous underwater vehicles (AUVs) command governor (CG) Computer simulation Constraints Control systems design disturbance observer (DO) Disturbance observers Environment models Estimation finite-time convergence Governors Kinetic theory Military technology Neurodynamics Ocean currents Ocean models Oceans one-layer recurrent neural network Optimization Parameter uncertainty Parametric statistics Quadratic programming receding horizon optimization Recurrent neural networks Uncertainty |
Title | Constrained Control of Autonomous Underwater Vehicles Based on Command Optimization and Disturbance Estimation |
URI | https://ieeexplore.ieee.org/document/8415752 https://www.proquest.com/docview/2162804942 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_Tkx78muL8Igcvgt2WtEnTox-TKUwvm-xW0uQFQW1ltgj-9SZpN4aKeCslKSm_l_eRvPd7CJ1SwZUmxgRANASRCpNAkjgOYmKEO4yPmXYH-qN7PpxEd1M2baHzRS0MAPjkM-i6R3-XrwtVuaOynrDWJmZW4a7YwK2u1VrcGESs7lZAHWOsDfrmV5L9pDe-HbgcLtGlwnoLjgByyQT5nio_FLG3LjebaDRfV51U8tytyqyrPr9RNv534Vtoo3Ez8UUtF9uoBfkOWl8iH2yj3PXq9B0iQOOrOmMdFwZfVKUrdCiqd-ybIn1Yb3SGH-HJJ9DhS2v2NC5y7EpLZK7xg1U6r001J3Yvrq3kVLPMiRMeWA1SF0fuosnNYHw1DJruC4GiCSkDkkhmskiCFFpKmYisH0qINEuMkNJIFbIs4oJqRnQkOBgT2nhOh4oYyYFDuIdW8yKHfYQzBsJwRRUTKmJSWa-eSK6tLxZSlWnZQb05IKlqqMnd_7-kPkTpJ6mFMHUQpg2EHXS2mPFW03L8MbbtEFmMa8DooKM55mmzb99TSjgVjjKHHvw-6xCt2W8ndcrjEVotZxUcW7ekzE68PH4BJ0LhNg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hegAOtLzUpbT4wAWJ7K6d2HGOlC5aHguXBXGLHHsspLYJ2k2E1F9f28muEKCqtyiyFUffeGbsmfkG4IhJoQ21NkJqMEp0nEWKpmmUUiv9ZXzKjb_Qn9yI8V1y-cAfVuBkWQuDiCH5DPv-McTyTaUbf1U2kM7apNwp3A_O7nPaVmstYwYJb_sVMM8Z6459i6DkMBtML0Y-i0v2mXT-gqeAfGGEQleVN6o42JfzjzBZrKxNK_nZb-qir_-8Im3836V_gs3O0SSnrWRswQqW27Dxgn5wB0rfrTP0iEBDztqcdVJZctrUvtShauYktEV6dv7ojNzjY0ihI9-d4TOkKokvLlGlIbdO7fzu6jmJf_HDyU4zK7xAkZHTIW155C7cnY-mZ-Oo678QaZbROqKZ4rZIFCpplFKZLIaxwsTwzEqlrNIxLxIhmeHUJFKgtbE70ZlYU6sECoz3YLWsSvwMpOAordBMc6kTrrTz66kSxnljMdOFUT0YLADJdUdO7v__Vx4OKcMsdxDmHsK8g7AHx8sZTy0xxz_G7nhEluM6MHpwsMA873buPGdUMOlJc9j--7MOYW08nVzn1xc3V19g3X0naxMgD2C1njX41TkpdfEtyOZfCsjkfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Control+of+Autonomous+Underwater+Vehicles+Based+on+Command+Optimization+and+Disturbance+Estimation&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Peng%2C+Zhouhua&rft.au=Wang%2C+Jiasen&rft.au=Wang%2C+Jun&rft.date=2019-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=66&rft.issue=5&rft.spage=3627&rft_id=info:doi/10.1109%2FTIE.2018.2856180&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |