Constrained Control of Autonomous Underwater Vehicles Based on Command Optimization and Disturbance Estimation

In this paper, a method is presented for antidisturbance constrained control of autonomous underwater vehicles subject to uncertainties and constraints. The uncertainties stem from uncertain hydrodynamic parameters, modeling errors, and unknown forces due to the ocean currents in an underwater envir...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 66; no. 5; pp. 3627 - 3635
Main Authors Peng, Zhouhua, Wang, Jiasen, Wang, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a method is presented for antidisturbance constrained control of autonomous underwater vehicles subject to uncertainties and constraints. The uncertainties stem from uncertain hydrodynamic parameters, modeling errors, and unknown forces due to the ocean currents in an underwater environment. An antidisturbance constrained controller is developed by designing a command governor and a disturbance observer. Specifically, the disturbance observer is developed to estimate the lumped disturbance composed of parametric model uncertainties, modeling errors, and unknown environmental forces. The command governor is designed for optimizing command signals in the receding horizon within the state and input constraints. The command governor is formulated as a quadratically constrained quadratic programming problem. To facilitate online implementations, a neurodynamic optimization method based on a one-layer recurrent neural network is employed for solving the quadratic optimization problem subject to inequality constraints with finite-time convergence. The efficacy of the proposed antidisturbance constrained control method for autonomous underwater vehicles is substantiated via simulations and comparisons.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2018.2856180