Gaussian Multiple and Random Access Channels: Finite-Blocklength Analysis

This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and a maximum likelihood decoder, the derived MAC bou...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 67; no. 11; pp. 6983 - 7009
Main Authors Yavas, Recep Can, Kostina, Victoria, Effros, Michelle
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2021.3111676

Cover

Loading…
More Information
Summary:This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and a maximum likelihood decoder, the derived MAC bound on each transmitter's rate matches the MolavianJazi-Laneman bound (2015) in its first- and second-order terms, improving the remaining terms to <inline-formula> <tex-math notation="LaTeX">\frac {1}2\frac {\log {n}}{n}+{O} \left ({\frac {1}{n}}\right) </tex-math></inline-formula> bits per channel use. The result<inline-formula> <tex-math notation="LaTeX">\vphantom {\sum ^{R}} </tex-math></inline-formula> then extends to a RAC model in which neither the encoders nor the decoder knows which of <inline-formula> <tex-math notation="LaTeX">{K} </tex-math></inline-formula> possible transmitters are active. In the proposed rateless coding strategy, decoding occurs at a time <inline-formula> <tex-math notation="LaTeX">{n}_{t} </tex-math></inline-formula> that depends on the decoder's estimate <inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula> of the number of active transmitters <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>. Single-bit feedback from the decoder to all encoders at each potential decoding time <inline-formula> <tex-math notation="LaTeX">{n}_{i} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">{i} \leq {t} </tex-math></inline-formula>, informs the encoders when to stop transmitting. For this RAC model, the proposed code achieves the same first-, second-, and third-order performance as the best known result for the Gaussian MAC in operation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2021.3111676