FedCrowd: A Federated and Privacy-Preserving Crowdsourcing Platform on Blockchain

Crowdsourcing has attracted widespread attention in recent years and developed into various applications. An indispensable service of crowdsourcing systems is task recommendation, which means tasks should be accurately recommended to the workers with aligned interests. However, existing systems rely...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on services computing Vol. 15; no. 4; pp. 2060 - 2073
Main Authors Guo, Yu, Xie, Hongcheng, Miao, Yinbin, Wang, Cong, Jia, Xiaohua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Crowdsourcing has attracted widespread attention in recent years and developed into various applications. An indispensable service of crowdsourcing systems is task recommendation, which means tasks should be accurately recommended to the workers with aligned interests. However, existing systems rely on their separate servers to conduct recommendation services, resulting in computing resources locked inside each isolated system. Moreover, due to the wide attacking surfaces of traditional centralized servers setting, existing systems are subject to single points of failure or malicious data breaches. Therefore, failure to address these inherent limitations properly will hinder the wide adoption of crowdsourcing. In this article, we propose and implement FedCrowd, the first federated and privacy-preserving crowdsourcing platform by using blockchain technology. Our main idea is to employ the smart contract as a trusted platform for systems to release encrypted tasks, and carefully craft matching protocols to enable efficient task recommendations in the ciphertext domain. Our task-matching protocols are highly customized for the decentralized settings, where users can securely perform keyword and range-based queries over federated task indexes without sharing secret keys. We formally analyze the security strengths and complete the prototype implementation on Ethereum. Experiment results demonstrate the feasibility and usability of the FedCrowd platform.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1939-1374
2372-0204
DOI:10.1109/TSC.2020.3031061