Accessible Melanoma Detection Using Smartphones and Mobile Image Analysis

We investigate the design of an entire mobile imaging system for early detection of melanoma. Different from previous work, we focus on smartphone-captured visible light images. Our design addresses two major challenges. First, images acquired using a smartphone under loosely-controlled environmenta...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 20; no. 10; pp. 2849 - 2864
Main Authors Do, Thanh-Toan, Hoang, Tuan, Pomponiu, Victor, Zhou, Yiren, Chen, Zhao, Cheung, Ngai-Man, Koh, Dawn, Tan, Aaron, Tan, Suat-Hoon
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigate the design of an entire mobile imaging system for early detection of melanoma. Different from previous work, we focus on smartphone-captured visible light images. Our design addresses two major challenges. First, images acquired using a smartphone under loosely-controlled environmental conditions may be subject to various distortions, and this makes melanoma detection more difficult. Second, processing performed on a smartphone is subject to stringent computation and memory constraints. In our work, we propose a detection system that is optimized to run entirely on the resource-constrained smartphone. Our system intends to localize the skin lesion by combining a lightweight method for skin detection with a hierarchical segmentation approach using two fast segmentation methods. Moreover, we study an extensive set of image features and propose new numerical features to characterize a skin lesion. Furthermore, we propose an improved feature selection algorithm to determine a small set of discriminative features used by the final lightweight system. In addition, we study the human-computer interface (HCI) design to understand the usability and acceptance issues of the proposed system. Our extensive evaluation on an image dataset provided by National Skin Center - Singapore (117 benign nevi and 67 malignant melanoma) confirms the effectiveness of the proposed system for melanoma detection: 89.09% sensitivity at specificity <inline-formula> <tex-math notation="LaTeX">\geq</tex-math></inline-formula>90%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2018.2814346