Infinite Families of Optimal Linear Codes Constructed From Simplicial Complexes
A linear code is optimal if it has the highest minimum distance of any linear code with a given length and dimension. We construct infinite families of optimal binary linear codes <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula&g...
Saved in:
Published in | IEEE transactions on information theory Vol. 66; no. 11; pp. 6762 - 6773 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A linear code is optimal if it has the highest minimum distance of any linear code with a given length and dimension. We construct infinite families of optimal binary linear codes <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula> constructed from simplicial complexes in <inline-formula> <tex-math notation="LaTeX">\mathbb {F}^{n}_{2} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> is a simplicial complex in <inline-formula> <tex-math notation="LaTeX">\mathbb {F}^{n}_{2} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\Delta ^{c} </tex-math></inline-formula> the complement of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. We first find an explicit computable criterion for <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula> to be optimal; this criterion is given in terms of the 2-adic valuation of <inline-formula> <tex-math notation="LaTeX">\sum _{i=1}^{s} 2^{|A_{i}|-1} </tex-math></inline-formula>, where the <inline-formula> <tex-math notation="LaTeX">A_{i} </tex-math></inline-formula>'s are maximal elements of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. Furthermore, we obtain much simpler criteria under various specific conditions on the maximal elements of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. In particular, we find that <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula> is a Griesmer code if and only if the maximal elements of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> are pairwise disjoint and their sizes are all distinct. Specially, when <inline-formula> <tex-math notation="LaTeX">\mathcal {F} </tex-math></inline-formula> has exactly two maximal elements, we explicitly determine the weight distribution of <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula>. We present many optimal linear codes constructed by our method, and we emphasize that we obtain at least 32 new optimal linear codes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2020.2993179 |