Remedial Strategies of T-NPC Three-Level Asymmetric Six-Phase PMSM Drives Based on SVM-DTC
In this paper, novel remedial direct torque control (DTC) schemes are proposed for open-circuit faults in T-type neutral-point-clamping (T-NPC) three-level asymmetric six-phase permanent-magnet synchronous motor (PMSM) drives. First, a simplified space vector modulation (SVM) is designed and applied...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 64; no. 9; pp. 6841 - 6853 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, novel remedial direct torque control (DTC) schemes are proposed for open-circuit faults in T-type neutral-point-clamping (T-NPC) three-level asymmetric six-phase permanent-magnet synchronous motor (PMSM) drives. First, a simplified space vector modulation (SVM) is designed and applied for DTC-controlled asymmetric six-phase drive, in such a way that both good current harmonic performance and fast dynamic response are available. Based on the SVM-DTC scheme, a remedial strategy is proposed for the open-circuit faults in phase windings. The key is to derive the relationship between the stator fluxes and the stator voltages of all phases under faulty condition. Then, a derived perturbation term is compensated for normal voltage references, and the fault-tolerant scheme is, thus, implemented without changing control structure of normal condition. The remedial DTC schemes are also studied and proposed for open-switch faults in T-NPC six-phase drives. The modulation methods are redesigned for the faults in half-bridge switches and NPC switches. The experiments are carried out on a laboratory prototype to verify the validity and performance of the proposed fault-tolerant control schemes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2017.2682796 |