On the Role of the Interlayer Interactions in Atomistic Simulations of Kaolinite Clay

A systematic simulation study was performed to investigate the interlayer interactions in a 1:1 layered phyllosilicate clay, kaolinite. Atomistic simulations with classical realistic force fields (INTERFACE and ClayFF) were used to examine the influence of the individual non-bonded interactions on t...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 29; no. 19; p. 4731
Main Authors Ható, Zoltán, Kristóf, Tamás
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.10.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A systematic simulation study was performed to investigate the interlayer interactions in a 1:1 layered phyllosilicate clay, kaolinite. Atomistic simulations with classical realistic force fields (INTERFACE and ClayFF) were used to examine the influence of the individual non-bonded interactions on the interlayer binding in the kaolinite model system. By switching off selected pairwise interactions in the applied force fields (leaving the intralayer interactions intact), it was confirmed that the tetrahedral-octahedral-type pairwise interactions held the kaolinite plates together and that interlayer hydrogen bonding, modeled by Coulombic forces, played a dominant role in this. Furthermore, it was observed that the number of hydrogen bonds formed had a significant influence on the basal spacing, and thus there was a striking change in the layer-layer interaction strength when there were only two kaolinite plates in the system, rather than several plates, as in real kaolinite particles. Contrary to expectations, the dispersion forces of the studied force fields alone were found to be strong enough to hold the kaolinite plates together.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29194731