Hyperaccumulation of cadmium by scallop Chlamys farreri revealed by comparative transcriptome analysis

Cadmium (Cd) is a hazardous environmental contaminant, which has a serious effect on the ecosystem, food safety and human health. Scallop could accumulate high concentration of Cd from the environment and has been regarded as a Cd hyper-accumulator. In this work, we investigated the antioxidative de...

Full description

Saved in:
Bibliographic Details
Published inBiometals Vol. 33; no. 6; pp. 397 - 413
Main Authors Zhao, Yanfang, Kang, Xuming, Shang, Derong, Ning, Jinsong, Ding, Haiyan, Zhai, Yuxiu, Sheng, Xiaofeng
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cadmium (Cd) is a hazardous environmental contaminant, which has a serious effect on the ecosystem, food safety and human health. Scallop could accumulate high concentration of Cd from the environment and has been regarded as a Cd hyper-accumulator. In this work, we investigated the antioxidative defense, detoxification and transport of Cd in the kidneys of scallops by transcriptome analysis. A total of 598 differentially expressed genes including 387 up-regulated and 211 down-regulated ones were obtained during Cd exposure, and 46 up-regulated and 260 down-regulated ones were obtained during depuration. Cadmium exposure could cause oxidative stress in the kidneys, which was particularly shown in the pathways involved in proteasome and oxidative phosphorylation. The mRNA expression of 5 metallothionein (MT) genes were overexpressed under Cd exposure and significantly decreased during Cd depuration, which played a vital role in Cd chelation and detoxification. The expression of divalent metal transporter (DMT) genes were down-regulated insignificantly during accumulation and depuration of Cd, which suggested that the DMT played little roles in Cd transport in scallops. A positive relationship in the expression of the zinc transporter (ZIP6 and ZIP1) genes with Cd exposure and depuration was observed, which confirmed its important role for Cd uptake in the kidneys of scallops. 26S proteasome activities and MT expression were Cd-dependent. This study supplied the important reference on the hyperaccumulation of Cd by scallops and identified some effective bioindicators for the environmental risk assessment.
ISSN:0966-0844
1572-8773
DOI:10.1007/s10534-020-00257-x