Efficient Multiparty Fully Homomorphic Encryption With Computation Fairness and Error Detection in Privacy Preserving Multisource Data Mining

In this article, we address the problem of data privacy in multisource data mining. To do it, we present a new multiparty fully homomorphic encryption (MP-FHE) scheme, in which all participants are completely fair to perform the same computation. At first, the proposed MP-FHE scheme is divided into...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on reliability Vol. 72; no. 4; pp. 1308 - 1323
Main Authors Guo, Guanglai, Zhu, Yan, Chen, E., Yu, Ruyun, Zhang, Lejun, Lv, Kewei, Feng, Rongquan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we address the problem of data privacy in multisource data mining. To do it, we present a new multiparty fully homomorphic encryption (MP-FHE) scheme, in which all participants are completely fair to perform the same computation. At first, the proposed MP-FHE scheme is divided into five stages (i.e., calculation, configuration, recombination, resharing, and reconstruction stage) to achieve the unified computation form of addition and multiplication. Meanwhile, random bivariate polynomials and commutative encryption are used to achieve the degree reduction of polynomials and the continuity of computation. Moreover, we prove that the scheme meets result consistency and program termination under the fail-stop adversary model. Especially, three kinds of error detection criteria are presented to find errors in three different stages (i.e., recombination, resharing, and reconstruction stage), which provides the monitor basis for the fail-stop adversary model. In addition, the MP-FHE scheme is applied into privacy preserving k-means clustering algorithm. Finally, we evaluate the computation and communication performance of our scheme from both theoretical and experimental aspects, and the evaluation results show that the scheme is efficient enough for multisource data mining.
ISSN:0018-9529
1558-1721
DOI:10.1109/TR.2023.3246563