Wastewater from natural gas Cansolv desulfurization process: Comprehensive characterization and effective removal of organic compounds
The wastewater generated by the solvent amine desulfurization process in natural gas purification plants is characterized by its recalcitrant organic compounds and high salinity. Without effective treatment, it has the potential to inflict severe environmental harm. The composition of organic matter...
Saved in:
Published in | The Science of the total environment Vol. 911; p. 168681 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
10.02.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | The wastewater generated by the solvent amine desulfurization process in natural gas purification plants is characterized by its recalcitrant organic compounds and high salinity. Without effective treatment, it has the potential to inflict severe environmental harm. The composition of organic matter, however, exerts a profound influence on the outcomes of oxidation processes. To rectify the limitations associated with indiscriminate oxidation that yields suboptimal results, this investigation meticulously performed a molecular-level analysis of organic matter. Based on the organic matter composition in the influent, this study compared the treatment efficacy of three oxidation processes and determined O3/H2O2-Fenton as the optimal joint approach. After O3/H2O2 oxidation, long-chain unsaturated organic compounds (C > 40,DBE > 20) underwent degradation into short-chain aldehydes and low-molecular-weight fatty acids, with priority given to reactions involving CC, CO, and OH over CH reactions. Subsequent Fenton oxidation effectively removed the refractory organics (CHOS, CHONS) and significantly reduced the diversity of organic matter (from 7730 to 4237). The carboxylation, demethylation, and dehydrogenation reactions further facilitated the removal of recalcitrant organic compounds. In light of these findings, this study substantiates that the conversion of extended-chain unsaturated compounds into abbreviated-chain saturated compounds within the system through O3/H2O2 oxidation significantly enhances the subsequent efficacy of Fenton oxidation in organic matter removal. These insights offer valuable perspectives for the efficient remediation of analogous high-salinity organic wastewater scenarios. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.168681 |