Dynamic Curriculum Learning for Imbalanced Data Classification
Human attribute analysis is a challenging task in the field of computer vision. One of the significant difficulties is brought from largely imbalance-distributed data. Conventional techniques such as re-sampling and cost-sensitive learning require prior-knowledge to train the system. To address this...
Saved in:
Published in | 2019 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 5016 - 5025 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Human attribute analysis is a challenging task in the field of computer vision. One of the significant difficulties is brought from largely imbalance-distributed data. Conventional techniques such as re-sampling and cost-sensitive learning require prior-knowledge to train the system. To address this problem, we propose a unified framework called Dynamic Curriculum Learning (DCL) to adaptively adjust the sampling strategy and loss weight in each batch, which results in better ability of generalization and discrimination. Inspired by curriculum learning, DCL consists of two-level curriculum schedulers: (1) sampling scheduler which manages the data distribution not only from imbalance to balance but also from easy to hard; (2) loss scheduler which controls the learning importance between classification and metric learning loss. With these two schedulers, we achieve state-of-the-art performance on the widely used face attribute dataset CelebA and pedestrian attribute dataset RAP. |
---|---|
ISSN: | 2380-7504 |
DOI: | 10.1109/ICCV.2019.00512 |