The signal transduction mechanism responsible for interferon-gamma-inducible indoleamine 2,3-dioxygenase (IDO) gene expression in T98G cells
The interferon (IFN)-gamma-induced indoleamine 2,3-dioxygenase (IDO) is implicated in the inhibition of intracellular pathogens, e.g. Chlamydia psittaci and Toxoplasma gondii. The intracellular signaling molecules responsible for the induction of IDO gene expression were investigated by the quantita...
Saved in:
Published in | Nihon saikingaku zasshi Vol. 47; no. 5; pp. 689 - 694 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Japanese |
Published |
Japan
1992
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The interferon (IFN)-gamma-induced indoleamine 2,3-dioxygenase (IDO) is implicated in the inhibition of intracellular pathogens, e.g. Chlamydia psittaci and Toxoplasma gondii. The intracellular signaling molecules responsible for the induction of IDO gene expression were investigated by the quantitative polymerase chain reaction. The gene expression was inhibited by a tyrosine kinase inhibitor, genistein. Being consistent with this, IFN-gamma induced increased tyrosine phosphorylation and this was inhibited by genistein. The transcription of IDO gene was not inhibited by protein kinase C (PKC) inhibitors, H-7 and staurosporine, or a calmodulin inhibitor, W-7. Irrelevance of PKC in IDO gene expression was supported by the failure of PMA or PMA + A23187 to induce IDO gene expression. These results all suggest that the tyrosine phosphorylation is a critical event in IFN-gamma-inducible IDO gene expression and PKC is not involved in the gene expression. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0021-4930 1882-4110 |
DOI: | 10.3412/jsb.47.689 |