Measuring Biophysical Parameters of Wheat Canopy with MHz- and GHz-Frequency Range Impulses Employing Contactless GPR

In this paper, the advantages of the joint use of MHz- and GHz-frequency band impulses when employing contactless ground penetration radar (GPR) for the remote sensing of biomass, the height of the wheat canopy, and underlying soil moisture were experimentally investigated. A MHz-frequency band nano...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 19; p. 3547
Main Authors Muzalevskiy, Konstantin, Fomin, Sergey, Karavayskiy, Andrey, Leskova, Julia, Lipshin, Alexey, Romanov, Vasily
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the advantages of the joint use of MHz- and GHz-frequency band impulses when employing contactless ground penetration radar (GPR) for the remote sensing of biomass, the height of the wheat canopy, and underlying soil moisture were experimentally investigated. A MHz-frequency band nanosecond impulse with a duration of 1.2 ns (average frequency of 750 MHz and spectrum bandwidth of 580 MHz, at a level of –6 dB) was emitted and received by a GPR OKO-3 equipped with an AB-900 M3 antenna unit. A GHz-frequency band sub-nanosecond impulse with a duration of 0.5 ns (average frequency of 3.2 GHz and spectral bandwidth of 1.36 GHz, at a level of −6 dB) was generated using a horn antenna and a Keysight FieldFox N9917B 18 GHz vector network analyzer. It has been shown that changes in the relative amplitudes and time delays of nanosecond impulses, reflected from a soil surface covered with wheat at a height from 0 to 87 cm and fresh above-ground biomass (AGB) from 0 to 1.5 kg/m2, do not exceed 6% and 0.09 ns, respectively. GPR nanosecond impulses reflected/scattered by the wheat canopy have not been detected. In this research, sub-nanosecond impulses reflected/scattered by the wheat canopy have been confidently identified and make it possible to measure the wheat height (fresh AGB up to 2.3 kg/m2 and height up to 104 cm) with a determination coefficient (R2) of ~0.99 and a bias of ~−7 cm, as well as fresh AGB where R2 = 0.97, with a bias = −0.09 kg/m2, and a root-mean-square error of 0.1 kg/m2. The joint use of impulses in two different MHz- and GHz-frequency bands will, in the future, make it possible to create UAV-based reflectometers for simultaneously mapping the soil moisture, height, and biomass of vegetation for precision farming systems.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16193547