Disentangled Representation Learning for Robust Radar Inter-Pulse Modulation Feature Extraction and Recognition
Modern Multi-Function Radars (MFRs) are sophisticated sensors that are capable of flexibly adapting their control parameters in transmitted pulse sequences. In complex electromagnetic environments, efficiently and accurately recognizing the inter-pulse modulations of non-cooperative radar pulse sequ...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 19; p. 3585 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Modern Multi-Function Radars (MFRs) are sophisticated sensors that are capable of flexibly adapting their control parameters in transmitted pulse sequences. In complex electromagnetic environments, efficiently and accurately recognizing the inter-pulse modulations of non-cooperative radar pulse sequences is a key step for modern Electronic Support (ES) systems. Existing recognition methods focus more on algorithmic designs, such as neural network structure designs, to improve recognition performance. However, in open electromagnetic environments with increased flexibility in radar transmission, these methods would suffer performance degradation due to domain shifts between training and testing datasets. To address this issue, this study proposes a robust radar inter-pulse modulation feature extraction and recognition method based on disentangled representation learning. At first, inspired by the Representation Learning Theory (RLT), the received radar pulse sequences can be disentangled into three explanatory factors related to (i) modulation types, (ii) modulation parameters, and (iii) measurement characteristics, such as measurement noise. Then, an explainable radar pulse sequence disentanglement network is proposed based on auto-encoding variational Bayes. The features extracted through the proposed method can effectively represent the key latent factors related to recognition tasks and maintain performance under domain shift conditions. Experiments on both ideal and non-ideal situations demonstrate the effectiveness, robustness, and superiority of the proposed method in comparison with other methods. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16193585 |