Recent insight into the role of RING-finger E3 ligases in glioma
The ubiquitin proteasome system (UPS) serves as the major posttranslational modification system for the maintenance of protein homeostasis. The ubiquitin ligases (E3s) are responsible for the recognition and recruitment of specific substrate proteins for polyubiquitination. Really interesting new ge...
Saved in:
Published in | Biochemical Society transactions Vol. 49; no. 1; p. 519 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
26.02.2021
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | The ubiquitin proteasome system (UPS) serves as the major posttranslational modification system for the maintenance of protein homeostasis. The ubiquitin ligases (E3s) are responsible for the recognition and recruitment of specific substrate proteins for polyubiquitination. Really interesting new gene (RING) finger E3s account for the majority of E3s. The human genome encodes more than 600 RING E3s, which are divided into three subclasses: single polypeptide E3s, cullin-RING ligases (CRLs) and other multisubunit E3s. The abnormal regulation of RING E3s has been reported to disrupt normal biological processes and induce the occurrence of many human malignancies. Glioma is the most common type of malignant primary brain tumor. In the last few decades, patient prognosis has improved as novel targeted therapeutic agents have developed. In this review, we will summarize the current knowledge about the dysregulation of RING E3s and the altered stability of their substrates in glioma. We will further introduce and discuss the current status and future perspectives of the application of small inhibitors and proteolysis-targeting chimeric molecules (PROTACs) interfering with RING E3s as potential anticancer agents for glioma. |
---|---|
ISSN: | 1470-8752 |
DOI: | 10.1042/BST20201060 |