Sparse Bayesian Learning Using Complex t-Prior for Beam-Domain Massive MIMO Channel Estimation

This paper proposes a novel beam-domain channel estimation (CE) algorithm via sparse Bayesian learning (SBL) using complex t-prior for massive multi-user multiple-input multiple-output (MIMO) systems. Due to the sidelobe leakage and insufficient observation resolution resulting from physical constra...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of the Communications Society Vol. 5; pp. 5905 - 5920
Main Authors Furuta, Kengo, Takahashi, Takumi, Ochiai, Hideki
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper proposes a novel beam-domain channel estimation (CE) algorithm via sparse Bayesian learning (SBL) using complex t-prior for massive multi-user multiple-input multiple-output (MIMO) systems. Due to the sidelobe leakage and insufficient observation resolution resulting from physical constraints, the equivalent channel after digital beamforming at the receiver has a structure with many small but non-zero elements, which cannot be modeled strictly as a sparse signal. To fully capture this pseudo-sparse structure characterized by the signal strength variations among elements, we design a novel SBL algorithm that incorporates a complex t-distribution using a hierarchical Bayesian model. By utilizing a high degree of adaptability of this heavy-tailed prior, it is possible to efficiently learn the signal strength, accounting for elements with non-zero but small values, which is verified by the regularization analysis based on an equivalent optimization problem. The efficacy of the proposed CE algorithm is confirmed by numerical simulations, which show that the proposed method not only significantly outperforms the state-of-the-art (SotA) sparse signal recovery (SSR)-based algorithms but also achieves the performance of a genie-aided scheme over a wide signal-to-noise ratio (SNR) range in both sub-6 GHz and millimeter-wave (mmWave) wireless communication scenarios.
ISSN:2644-125X
2644-125X
DOI:10.1109/OJCOMS.2024.3457507