Proton‐Mediated Phase Control in Flexible and Transparent Mott Transistors

To meet the development of wearable and energy‐efficient flexible electronics, multifunctional oxide film on soft substrate and its versatile phase control are in demand. Here, flexible VO2 film is directly deposited on mica via van der Waals epitaxy, exhibiting pronounced metal‐insulator (MI) trans...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 6; no. 1
Main Authors Deng, Xing, Zhao, Yi‐Feng, Zhong, Ni, Yue, Fang‐Yu, Huang, Rong, Peng, Hui, Tang, Xiao‐Dong, Xiang, Ping‐Hua, Chu, Ying‐Hao, Duan, Chun‐Gang
Format Journal Article
LanguageEnglish
Published 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To meet the development of wearable and energy‐efficient flexible electronics, multifunctional oxide film on soft substrate and its versatile phase control are in demand. Here, flexible VO2 film is directly deposited on mica via van der Waals epitaxy, exhibiting pronounced metal‐insulator (MI) transition and infrared (IR) switching properties. Using a rubbery solid ionic gel as gate insulator, a fully flexible and transparent VO2‐channel Mott transistor is successfully demonstrated. The prototype Mott transistor processes excellent mechanical flexibility and giant on/off current ratio of ≈105% even at room temperature. Highly reversible suppression of MI transition is realized by applying small gate voltages and the nonvolatile phase modulation suggests an electrochemical reaction mechanism. X‐ray diffraction and secondary‐ion mass spectroscopy analyses, together with theoretical calculation, confirm that electrically controlled phase transformation is mainly caused by reversible and nonvolatile proton (H+) doping into VO2 lattices. Significant modulation of IR transmittance (>40%) is observed in the VO2 Mott transistor, which is attributed to electrically driven phase transition between insulating VO2 and metallic HxVO2 phases. The flexible and transparent Mott transistor provides a good platform for proton‐mediated Mottronics and realizes novel electric control of optical characteristics, showing a promising application for flexible energy‐saving smart windows. A transparent and flexible Mott transistor is demonstrated based on proton‐mediated phase control of VO2 with solid ionic gel gating. Highly reversible and nonvolatile metal‐insulator transition and near‐infrared transmittance modulation are achieved with the proton insertion/extraction into/from the VO2 lattice driven by electrolyte gating, paving enormous potential applications in future flexible energy‐efficient electronics.
ISSN:2199-160X
2199-160X
DOI:10.1002/aelm.201900742