Partitioning Sparse Graphs into an Independent Set and a Forest of Bounded Degree
An $({\cal I},{\cal F}_d)$-partition of a graph is a partition of the vertices of the graph into two sets $I$ and $F$, such that $I$ is an independent set and $F$ induces a forest of maximum degree at most $d$. We show that for all $M<3$ and $d \ge \frac{2}{3-M} - 2$, if a graph has maximum avera...
Saved in:
Published in | The Electronic journal of combinatorics Vol. 25; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Open Journal Systems
02.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An $({\cal I},{\cal F}_d)$-partition of a graph is a partition of the vertices of the graph into two sets $I$ and $F$, such that $I$ is an independent set and $F$ induces a forest of maximum degree at most $d$. We show that for all $M<3$ and $d \ge \frac{2}{3-M} - 2$, if a graph has maximum average degree less than $M$, then it has an $({\cal I},{\cal F}_d)$-partition. Additionally, we prove that for all $\frac{8}{3} \le M < 3$ and $d \ge \frac{1}{3-M}$, if a graph has maximum average degree less than $M$ then it has an $({\cal I},{\cal F}_d)$-partition. It follows that planar graphs with girth at least $7$ (resp. $8$, $10$) admit an $({\cal I},{\cal F}_5)$-partition (resp. $({\cal I},{\cal F}_3)$-partition, $({\cal I},{\cal F}_2)$-partition). |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/6815 |