Improvement in nano-hybrid membrane PES–nanosilica performance using ultra violet irradiation and acetone–ethanol immersion for produced water treatment

This research was performed primarily to investigate the effect of membrane immersion in hydrophilic solvents (mixture of acetone–ethanol). Special emphasis was focused on the study of membrane morphology toward performance of nano-hybrid polyethersulfone (PES)–nanosilica membrane for produced water...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental science and technology (Tehran) Vol. 16; no. 2; pp. 973 - 986
Main Authors Kusworo, T. D., Aryanti, N., Qudratun, Utomo, D. P., Widayat
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 04.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This research was performed primarily to investigate the effect of membrane immersion in hydrophilic solvents (mixture of acetone–ethanol). Special emphasis was focused on the study of membrane morphology toward performance of nano-hybrid polyethersulfone (PES)–nanosilica membrane for produced water treatment. In this research, nano-hybrid PES–nanosilica membranes with immersion and without immersion were prepared using dry-/wet-phase inversion technique. The prepared membranes were immersed in the mixture of acetone–ethanol at various mass ratios of 1:5 and 1:8. The immersion of membranes allowed the alteration of membrane morphology to be more hydrophilic. The scanning electron microscope (SEM) result and Fourier transform infra red spectroscopy analysis confirmed that membrane immersed in acetone–ethanol significantly enhanced the hydrophilicity of the membrane by increasing the number of hydrophilic-specific functional group. The SEM surface images indicated the good compatibility between the PES and nanosilica for immersed membrane. Nano-hybrid membrane immersed in the acetone–ethanol of 1:8 performed best as shown by the flux and rejection enhancement. Comparing to the pure PES performance, the permeate flux and rejection of nano-hybrid membrane PES–nanosilica increased to 5 and 39%, respectively. On the other hand, immersed nano-hybrid membrane in acetone–ethanol of 1:8 with combination of UV irradiation increased the permeate water flux and rejection to 21 and 15%, respectively. In addition, the immersion in the acetone–ethanol displayed better antifouling behavior. The research results revealed the improvement in membrane performance for produced water treatment after being immersed in acetone–ethanol and UV-irradiated.
ISSN:1735-1472
1735-2630
DOI:10.1007/s13762-018-1718-7