Cell adhesion molecule L1 contributes to neuronal excitability regulating the function of voltage-gated Na+ channels
L1 (also known as L1CAM) is a trans-membrane glycoprotein mediating neuron-neuron adhesion through homophilic and heterophilic interactions. Although experimental evidence has implicated L1 in axonal outgrowth, fasciculation and pathfinding, its contribution to voltage-gated Na(+) channel function a...
Saved in:
Published in | Journal of cell science Vol. 129; no. 9; pp. 1878 - 1891 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | L1 (also known as L1CAM) is a trans-membrane glycoprotein mediating neuron-neuron adhesion through homophilic and heterophilic interactions. Although experimental evidence has implicated L1 in axonal outgrowth, fasciculation and pathfinding, its contribution to voltage-gated Na(+) channel function and membrane excitability has remained unknown. Here, we show that firing rate, single cell spiking frequency and Na(+) current density are all reduced in hippocampal excitatory neurons from L1-deficient mice both in culture and in slices owing to an overall reduced membrane expression of Na(+) channels. Remarkably, normal firing activity was restored when L1 was reintroduced into L1-deficient excitatory neurons, indicating that abnormal firing patterns are not related to developmental abnormalities, but are a direct consequence of L1 deletion. Moreover, L1 deficiency leads to impairment of action potential initiation, most likely due to the loss of the interaction of L1 with ankyrin G that produces the delocalization of Na(+) channels at the axonal initial segment. We conclude that L1 contributes to functional expression and localization of Na(+) channels to the neuronal plasma membrane, ensuring correct initiation of action potential and normal firing activity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1477-9137 |
DOI: | 10.1242/jcs.182089 |