Functional expression of mutations in the human NaCl cotransporter: Evidence for impaired routing mechanisms in gitelman's syndrome

Gitelman's syndrome is an autosomal recessive renal tubular disorder characterized by hypokalemic metabolic alkalosis, hypomagnesemia, and hypocalciuria. This disorder results from mutations in the thiazide-sensitive NaCl cotransporter (NCC). To elucidate the functional implications of mutation...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Society of Nephrology Vol. 13; no. 6; pp. 1442 - 1448
Main Authors DE JONG, Joke C, VAN DER VLIET, Walter A, VAN DEN HEUVEL, Lambertus P. W. J, WILLEMS, Peter H. G. M, KNOERS, Nine V. A. M, BINDELS, René J. M
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 01.06.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gitelman's syndrome is an autosomal recessive renal tubular disorder characterized by hypokalemic metabolic alkalosis, hypomagnesemia, and hypocalciuria. This disorder results from mutations in the thiazide-sensitive NaCl cotransporter (NCC). To elucidate the functional implications of mutations associated with this disorder, metolazone-sensitive (22)Na(+) uptake, subcellular localization, and glycosidase-sensitive glycosylation of human NCC (hNCC) were determined in Xenopus laevis oocytes expressing FLAG-tagged wild-type or mutant hNCC. Injection of 10 ng of FLAG-tagged hNCC cRNA resulted in metolazone-sensitive (22)Na(+) uptake of 3.4 +/- 0.2 nmol Na(+)/oocyte per 2 h. Immunocytochemical analysis revealed sharp immunopositive staining at the plasma membrane. In agreement with this finding, a broad endoglycosidase H-insensitive band of 130 to 140 kD was present in Western blots of total membranes. The plasma membrane localization of this complex-glycosylated protein was confirmed by immunoblotting of purified plasma membranes. The mutants could be divided into two distinct classes. Class I mutants (G439S, T649R, and G741R) exhibited no significant metolazone-sensitive (22)Na(+) uptake. Immunopositive staining was present in a diffuse band just below the plasma membrane. This endoplasmic reticulum and/or pre-Golgi complex localization was further suggested by the complete absence of the endoglycosidase H-insensitive band. Class II mutants (L215P, F536L, R955Q, G980R, and C985Y) demonstrated significant metolazone-sensitive (22)Na(+) uptake, although uptake was significantly lower than that obtained with wild-type hNCC. The latter mutants could be detected at and below the oocyte plasma membrane, and immunoblotting revealed the characteristic complex-glycosylated bands. In conclusion, this study substantiates NCC processing defects as the underlying pathogenic mechanism in Gitelman's syndrome.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1046-6673
1533-3450
DOI:10.1097/01.ASN.0000017904.77985.03