Curving silver nanowires using liquid droplets for highly stretchable and durable percolation networks

Silver (Ag) nanowires (NWs) are promising building blocks for the fabrication of stretchable electrodes, but they may undergo mechanical fracture at low tensile strains, which leads to degradation in electrical performance of Ag NW-based stretchable electrodes. Here we report on a simple route to cr...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 9; no. 26; pp. 8938 - 8944
Main Authors Lim, Guh-Hwan, Ahn, Kwangguk, Bok, Shingyu, Nam, Jaewook, Lim, Byungkwon
Format Journal Article
LanguageEnglish
Published England 14.07.2017
Online AccessGet full text

Cover

Loading…
More Information
Summary:Silver (Ag) nanowires (NWs) are promising building blocks for the fabrication of stretchable electrodes, but they may undergo mechanical fracture at low tensile strains, which leads to degradation in electrical performance of Ag NW-based stretchable electrodes. Here we report on a simple route to create the percolation networks of Ag NW rings via a conventional spray coating process. We discovered that Ag NWs can be bent into curved shapes within micrometer-sized liquid droplets generated during the spraying process due to elasto-capillary interaction. This curving phenomenon allowed the deposition of Ag NW rings directly on a desired substrate without the need for any complicated process. The network of Ag NW rings effectively releases the applied tensile strains thanks to curved shapes of the constituent NWs, enabling the achievement of excellent electromechanical stability as well as high stretchability. Our approach not only provides a simple, low cost, and scalable route to the fabrication of high-performance Ag NW-based stretchable electrodes, but also opens a new and useful way of engineering the structure of NWs for various applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2040-3364
2040-3372
DOI:10.1039/c7nr02615c