Discovery of 1,3,4-oxadiazoles with slow-action activity against Plasmodium falciparum malaria parasites
To achieve malaria eradication, new preventative agents that act differently to front-line treatment drugs are needed. To identify potential chemoprevention starting points we screened a sub-set of the CSIRO Australia Compound Collection for compounds with slow-action in vitro activity against Plasm...
Saved in:
Published in | European journal of medicinal chemistry Vol. 278; p. 116796 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
France
Elsevier Masson SAS
15.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To achieve malaria eradication, new preventative agents that act differently to front-line treatment drugs are needed. To identify potential chemoprevention starting points we screened a sub-set of the CSIRO Australia Compound Collection for compounds with slow-action in vitro activity against Plasmodium falciparum. This work identified N,N-dialkyl-5-alkylsulfonyl-1,3,4-oxadiazol-2-amines as a new antiplasmodial chemotype (e.g., 1 96 h IC50 550 nM; 3 96 h IC50 160 nM) with a different action to delayed-death slow-action drugs. A series of analogues were synthesized from thiotetrazoles and carbomoyl derivatives using Huisgen 1,3,4-oxadiazole synthesis followed by oxidation of the resultant thioethers to target sulfones. Structure activity relationship analysis of analogues identified compounds with potent and selective in vitro activity against drug-sensitive and multi-drug resistant Plasmodium parasites (e.g., 31 and 32 96 h IC50 <40 nM; SI > 2500). Subsequent studies in mice with compound 1, which had the best microsomal stability of the compounds assessed (T1/2 >255 min), demonstrated rapid clearance and poor oral in vivo efficacy in a P. berghei murine malaria model. These data indicate that while N,N-dialkyl-5-alkylsulfonyl-1,3,4-oxadiazol-2-amines are a novel class of slow-acting antiplasmodial agents, the further development of this chemotype for malaria chemoprophylaxis will require pharmacokinetic profile improvements.
[Display omitted]
•New drugs are needed to achieve malaria eradication.•Novel 1,3,4-oxadiazoles with activity against malaria parasites were identified.•In vivo studies indicated that pharmacokinetic improvements are needed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0223-5234 1768-3254 1768-3254 |
DOI: | 10.1016/j.ejmech.2024.116796 |