In situ formation of molecular-scale ordered polyaniline films by zinc coordination
Considerable research approaches have focused on improving the crystallinity of conducting polymers to enhance the electrical conductivity. However, it is difficult to control the arrangement of polymer chains without the use of expensive and complex methods because of the intrinsic morphology of po...
Saved in:
Published in | Nanoscale Vol. 9; no. 19; pp. 6545 - 6550 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
21.05.2017
|
Online Access | Get full text |
Cover
Loading…
Summary: | Considerable research approaches have focused on improving the crystallinity of conducting polymers to enhance the electrical conductivity. However, it is difficult to control the arrangement of polymer chains without the use of expensive and complex methods because of the intrinsic morphology of polymers. Herein, we report a one-step in situ process to produce controlled molecular-scale ordered polyaniline (PANI) films by coordination crosslinking with Zn ions using solvent-vapor thermal annealing (SVTA). The resulting PANI film crosslinked by Zn coordination has a face-centered cubic structure at the molecular scale, which was confirmed by high-voltage electron microscopy. The in situ coordination crosslinking produced a new class of molecular ordering in the PANI films and drastically enhanced their conductivity, showing their potential for use in various electronic and energy devices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c7nr01060e |