High-pressure and high-temperature modulation of one-dimensional infinite chain in SeO2
The structural evolution of lone-pair compounds under high-pressure and high-temperature conditions has been a subject of fundamental interest in revealing modulated polymorphs. As one of the archetypal lone-pair compounds, selenium dioxide (SeO2) has attracted much attention due to the pressure mod...
Saved in:
Published in | Applied physics letters Vol. 124; no. 14 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The structural evolution of lone-pair compounds under high-pressure and high-temperature conditions has been a subject of fundamental interest in revealing modulated polymorphs. As one of the archetypal lone-pair compounds, selenium dioxide (SeO2) has attracted much attention due to the pressure modulation of its one-dimensional infinite W-shaped chain arrangement. Here, through swarm intelligence algorithm in conjunction with the first-principles simulation, we propose the existence of an orthorhombic Pnma-SeO2 structure, characterized by V-shaped chains interconnected via vertex-sharing SeO3 pyramids. These V-shaped chains demonstrate reduced compressibility along their chain direction compared to the W-shaped chains. Calculations indicate that Pnma-SeO2 is a semiconductor with a large indirect bandgap of 2.39 eV. Remarkably, we synthesized the predicted Pnma-SeO2 in a laser-heated diamond anvil cell at a pressure of 48.5 or 87 GPa as identified by in situ synchrotron x-ray diffraction data. Our findings lead to a significant extension of the phase diagram and transition path of SeO2 and provide key insights into understanding the pressure modulation in lone-pair compounds. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0196686 |