Heteroborospherene nanoclusters as high-performance nonlinear optical materials
Today, the design of new compounds with giant nonlinear optical responses is attracted to many researchers. Inspired by an interesting finding of a new class of heteroborospherenes which were formed by doping four carbon atoms in the B364- nanocluster (C4B32), we suggest the alkali metal-doped C4B32...
Saved in:
Published in | Molecular physics Vol. 118; no. 17; p. e1745918 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
01.09.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Today, the design of new compounds with giant nonlinear optical responses is attracted to many researchers. Inspired by an interesting finding of a new class of heteroborospherenes which were formed by doping four carbon atoms in the B364- nanocluster (C4B32), we suggest the alkali metal-doped C4B32 (M@C4B32, M=Li, Na, and K) nanoclusters as high-performance nonlinear optical materials. Our results show that the alkali metal atoms have a considerable effect on the structural and electronic properties of the C4B32 nanocluster. We found that the doping alkali metal can remarkably decrease the HOMO-LUMO gap and significantly increases the first hyperpolarizability of the C4B32 nanocluster. Also, our results reveal that the first hyperpolarizability of the M@C4B32 nanoclusters can be progressively enhanced by increasing the atomic number of alkali metals. The effect of external electric fields on the nonlinear optical responses of the M@C4B32 has been systematically explored. We found that the first hyperpolarizability of the M@C4B32 compounds can be gradually increased by increasing the imposed external electric field from zero to the critical external electric field along the charge transfer direction (M→C4B32). Accordingly, this work presents an efficient strategy to improve the nonlinear optical responses of the heteroborospherenes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0026-8976 1362-3028 |
DOI: | 10.1080/00268976.2020.1745918 |