On the asymptotic normality for integrated square error of Wegman-Davies recursive density estimators

In this article, let { X n , n ≥ 1 } be a sequence of i.i.d. random variables with common probability density function f, and f ̂ n denotes a Wegman-Davies recursive density estimator f ̂ n ( x ) = 1 n h n 1 / 2 ∑ i = 1 n 1 h i 1 / 2 K ( x − X i h i ) , where K is a kernel function and { h i , i ≥ 1...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 54; no. 5; pp. 1328 - 1353
Main Authors Miao, Yu, Ye, Jun
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 04.03.2025
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, let { X n , n ≥ 1 } be a sequence of i.i.d. random variables with common probability density function f, and f ̂ n denotes a Wegman-Davies recursive density estimator f ̂ n ( x ) = 1 n h n 1 / 2 ∑ i = 1 n 1 h i 1 / 2 K ( x − X i h i ) , where K is a kernel function and { h i , i ≥ 1 } is a sequence of band-width parameters. The asymptotic normality for integrated square error of Wegman-Davies recursive density estimators are established by using martingale method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0361-0926
1532-415X
DOI:10.1080/03610926.2024.2334803