On the asymptotic normality for integrated square error of Wegman-Davies recursive density estimators
In this article, let { X n , n ≥ 1 } be a sequence of i.i.d. random variables with common probability density function f, and f ̂ n denotes a Wegman-Davies recursive density estimator f ̂ n ( x ) = 1 n h n 1 / 2 ∑ i = 1 n 1 h i 1 / 2 K ( x − X i h i ) , where K is a kernel function and { h i , i ≥ 1...
Saved in:
Published in | Communications in statistics. Theory and methods Vol. 54; no. 5; pp. 1328 - 1353 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
04.03.2025
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, let
{
X
n
,
n
≥
1
}
be a sequence of i.i.d. random variables with common probability density function f, and
f
̂
n
denotes a Wegman-Davies recursive density estimator
f
̂
n
(
x
)
=
1
n
h
n
1
/
2
∑
i
=
1
n
1
h
i
1
/
2
K
(
x
−
X
i
h
i
)
,
where K is a kernel function and
{
h
i
,
i
≥
1
}
is a sequence of band-width parameters. The asymptotic normality for integrated square error of Wegman-Davies recursive density estimators are established by using martingale method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0361-0926 1532-415X |
DOI: | 10.1080/03610926.2024.2334803 |