Artificial neural network models for early diagnosis of hepatocellular carcinoma using serum levels of α-fetoprotein, α-fetoprotein-L3, des-γ-carboxy prothrombin, and Golgi protein 73
More than 70% of hepatocellular carcinoma (HCC) cases develop as a consequence of liver cirrhosis (LC). Here we have evaluated the diagnostic potential of four serum biomarkers, and developed models for HCC diagnosis and differentiation from LC patients. Serum levels of α-fetoprotein (AFP), AFP-L3,...
Saved in:
Published in | Oncotarget Vol. 8; no. 46; pp. 80521 - 80530 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Impact Journals LLC
06.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | More than 70% of hepatocellular carcinoma (HCC) cases develop as a consequence of liver cirrhosis (LC). Here we have evaluated the diagnostic potential of four serum biomarkers, and developed models for HCC diagnosis and differentiation from LC patients. Serum levels of α-fetoprotein (AFP), AFP-L3, des-γ-carboxy prothrombin (DCP), and Golgi protein 73 (GP73) were analyzed in 114 advanced HCC patients, 81 early stage HCC patients, and 152 LC patients. Multilayer perceptron (MLP) and radial basis function (RBF) neural networks were used to construct the diagnostic models. Using all stages, HCC diagnostic models had a higher sensitivity (>70%) than the individual serum biomarkers, whereas only early stage HCC diagnostic models had a higher specificity (>80%). The early stage HCC diagnostic models could not be used as HCC screening tools due to their low sensitivity (about 40%). These results suggest that a combination of the two models might be used as a screening tool to distinguish early stage HCC patients from LC patients, thus improving prevention and treatment of HCC. |
---|---|
AbstractList | More than 70% of hepatocellular carcinoma (HCC) cases develop as a consequence of liver cirrhosis (LC). Here we have evaluated the diagnostic potential of four serum biomarkers, and developed models for HCC diagnosis and differentiation from LC patients. Serum levels of α-fetoprotein (AFP), AFP-L3, des-γ-carboxy prothrombin (DCP), and Golgi protein 73 (GP73) were analyzed in 114 advanced HCC patients, 81 early stage HCC patients, and 152 LC patients. Multilayer perceptron (MLP) and radial basis function (RBF) neural networks were used to construct the diagnostic models. Using all stages, HCC diagnostic models had a higher sensitivity (>70%) than the individual serum biomarkers, whereas only early stage HCC diagnostic models had a higher specificity (>80%). The early stage HCC diagnostic models could not be used as HCC screening tools due to their low sensitivity (about 40%). These results suggest that a combination of the two models might be used as a screening tool to distinguish early stage HCC patients from LC patients, thus improving prevention and treatment of HCC. More than 70% of hepatocellular carcinoma (HCC) cases develop as a consequence of liver cirrhosis (LC). Here we have evaluated the diagnostic potential of four serum biomarkers, and developed models for HCC diagnosis and differentiation from LC patients. Serum levels of α-fetoprotein (AFP), AFP-L3, des-γ-carboxy prothrombin (DCP), and Golgi protein 73 (GP73) were analyzed in 114 advanced HCC patients, 81 early stage HCC patients, and 152 LC patients. Multilayer perceptron (MLP) and radial basis function (RBF) neural networks were used to construct the diagnostic models. Using all stages, HCC diagnostic models had a higher sensitivity (>70%) than the individual serum biomarkers, whereas only early stage HCC diagnostic models had a higher specificity (>80%). The early stage HCC diagnostic models could not be used as HCC screening tools due to their low sensitivity (about 40%). These results suggest that a combination of the two models might be used as a screening tool to distinguish early stage HCC patients from LC patients, thus improving prevention and treatment of HCC. |
Author | Sun, Zhiqiang Li, Bo Li, Boan Guo, Tongsheng Chen, Lin Zhao, Jing Mao, Yuanli Li, Xiaoxi Li, Xiaohan |
AuthorAffiliation | 2 Graduate student team, Medical University of PLA, Beijing, China 1 Center for Clinical Laboratory, 302 Millitary Hospital, Beijing, China |
AuthorAffiliation_xml | – name: 2 Graduate student team, Medical University of PLA, Beijing, China – name: 1 Center for Clinical Laboratory, 302 Millitary Hospital, Beijing, China |
Author_xml | – sequence: 1 givenname: Bo surname: Li fullname: Li, Bo organization: Center for Clinical Laboratory, 302 Millitary Hospital, Beijing, China – sequence: 2 givenname: Boan surname: Li fullname: Li, Boan organization: Center for Clinical Laboratory, 302 Millitary Hospital, Beijing, China – sequence: 3 givenname: Tongsheng surname: Guo fullname: Guo, Tongsheng organization: Center for Clinical Laboratory, 302 Millitary Hospital, Beijing, China – sequence: 4 givenname: Zhiqiang surname: Sun fullname: Sun, Zhiqiang organization: Center for Clinical Laboratory, 302 Millitary Hospital, Beijing, China – sequence: 5 givenname: Xiaohan surname: Li fullname: Li, Xiaohan organization: Graduate student team, Medical University of PLA, Beijing, China – sequence: 6 givenname: Xiaoxi surname: Li fullname: Li, Xiaoxi organization: Center for Clinical Laboratory, 302 Millitary Hospital, Beijing, China – sequence: 7 givenname: Lin surname: Chen fullname: Chen, Lin organization: Graduate student team, Medical University of PLA, Beijing, China – sequence: 8 givenname: Jing surname: Zhao fullname: Zhao, Jing organization: Center for Clinical Laboratory, 302 Millitary Hospital, Beijing, China – sequence: 9 givenname: Yuanli surname: Mao fullname: Mao, Yuanli organization: Graduate student team, Medical University of PLA, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29113322$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkcFu1DAQhi1UREvpA3BBPnJoSmyvk_iCVFVQkFbiAmfLsSdZQ-JZbKewj4W48RB9JpLtUgq-jK35_n-s-Z-So4ABCHnOygvWVIK_wmAxm9hDvmCKq-YROWFqpQoupTh6cD8mZyl9LucjV3XD1RNyzBVjQnB-Qn5dxuw7b70ZaIAp7kv-hvELHdHBkGiHkYKJw446b_qAySeKHd3A1mS0MAzTYCK1JlofcDR0Sj70NEGcRjrAzWIx47c_ig4ybiNm8OH8v3exFufUQSpufxazU4vfd3RpbSKO7YKb4Og1Dr2nBwWtxTPyuDNDgrNDPSWf3r75ePWuWH-4fn91uS4sb6pcOMehddIowRvluCnbxhlQrOVC1nULrlYV2JWqZ0JVZelK0RmoWFs7s3K2Fafk9Z3vdmpHcBZCntekt9GPJu40Gq__7QS_0T3eaFlJyVk9G7w8GET8OkHKevRp2ZwJgFPSTFWskVyKBWV3qI2YUoTufgwr9T52_Td2vY991rx4-L97xZ-QxW9vrbYi |
CitedBy_id | crossref_primary_10_1097_MD_0000000000027673 crossref_primary_10_1042_BSR20171359 crossref_primary_10_2147_JHC_S272762 crossref_primary_10_3389_fgene_2023_1004481 crossref_primary_10_31146_1682_8658_ecg_179_7_109_117 crossref_primary_10_1016_j_cca_2020_07_017 crossref_primary_10_12998_wjcc_v7_i12_1367 crossref_primary_10_5812_jjm_99379 crossref_primary_10_1002_cam4_2792 crossref_primary_10_1111_1440_1681_13907 crossref_primary_10_1080_00365513_2023_2175238 crossref_primary_10_1016_j_dld_2018_08_019 crossref_primary_10_1002_jcla_23932 crossref_primary_10_3748_wjg_v26_i34_5130 crossref_primary_10_4236_jilsa_2020_122003 crossref_primary_10_1007_s12088_018_0708_2 |
Cites_doi | 10.1016/S0378-1119(00)00136-0 10.3748/wjg.v19.i8.1193 10.1186/1471-230X-10-46 10.1007/s10620-006-9541-2 10.1259/bjr/13212920 10.2214/AJR.10.5390 10.1053/j.gastro.2004.09.023 10.3322/canjclin.55.2.74 10.1016/S0140-6736(03)14964-1 10.1002/1096-9071(200007)61:3<362::AID-JMV14>3.0.CO;2-I 10.1053/jhep.2002.32525 10.2214/AJR.10.5845 10.1097/01.tp.0000298003.88530.11 10.1053/j.gastro.2009.10.031 10.1016/j.jhep.2005.05.028 |
ContentType | Journal Article |
Copyright | Copyright: © 2017 Li et al. 2017 |
Copyright_xml | – notice: Copyright: © 2017 Li et al. 2017 |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.18632/oncotarget.19298 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1949-2553 |
EndPage | 80530 |
ExternalDocumentID | 10_18632_oncotarget_19298 29113322 |
Genre | Journal Article |
GroupedDBID | --- 53G ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL DIK FRJ GX1 HYE KQ8 M48 M~E NPM OK1 PGMZT RPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c286t-dd2ebd5a93289d2a0b8dae91b23577bed796ec497a939600d03fae61b7da4dcb3 |
IEDL.DBID | RPM |
ISSN | 1949-2553 |
IngestDate | Tue Sep 17 21:14:22 EDT 2024 Sat Aug 17 00:51:28 EDT 2024 Fri Aug 23 00:24:29 EDT 2024 Wed Oct 16 00:59:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 46 |
Keywords | artificial neural network serum tumor biomarker hepatocellular carcinoma |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c286t-dd2ebd5a93289d2a0b8dae91b23577bed796ec497a939600d03fae61b7da4dcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655217/ |
PMID | 29113322 |
PQID | 1961852537 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5655217 proquest_miscellaneous_1961852537 crossref_primary_10_18632_oncotarget_19298 pubmed_primary_29113322 |
PublicationCentury | 2000 |
PublicationDate | 2017-10-06 |
PublicationDateYYYYMMDD | 2017-10-06 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Oncotarget |
PublicationTitleAlternate | Oncotarget |
PublicationYear | 2017 |
Publisher | Impact Journals LLC |
Publisher_xml | – name: Impact Journals LLC |
References | Bruix (2) 2003; 362 Mao (30) 2017 48 49 Yu (21); 2013 Tian (35); 2011 Zhou (44); 2013 Negrini (29); 2010 Ohnishi (14); 1999 Barutçu (46); 2008 Villanueva (7) 2013; 19 Di Carlo (41) 2011; 102 Fimmel (38) 2002; 35 Ijzermans (34); 2013 Marrero (40); 2007 Hepatotogy Branch, Infectious and Parasitology branch, Chinese Medical Association (50) 2004; 38 Kudo (33) 2010; 10 Satomura (32); 2001 Fimmel (37); 2004 Balasundram (51); 2012 Kim (9) 2012; 85 Fimmel (36) 2000; 249 Pisani (1) 2005; 55 Jemal (6) 2013; 63 Mitchell (23); 2014 Taylor-Robinson (31); 2009 Block (17) 2005; 43 Buscema (19); 2007 Tinessa (12) 2004; 127 Morris (8); 2011 Goshima (27); 2008 Miao (18) 2009; 27 Reichman (5); 2009 Satomura (39) 2007; 52 Kennedy (45); 2005 Drew (20); 2004 Fang (24); 2017 Nakatsura (25); 2009 Xu (4); 2015 Nie (43); 2010 Kim (10) 2011; 197 Saito (47); 2011 Ishikawa (11) 2011; 197 Neuhaus (26); 2009 Furie (13); 1984 Dienstag (42) 2010; 138 Maddrey (3) 2000; 61 Hirai (16) 1993; 53 Inchiosa (22); 2015 Ichida (15) 1985; 2 Lo (28) 2008; 85 |
References_xml | – volume: 2013 start-page: 59 issue: 7 ident: 34 article-title: Recently introduced biomarkers for screening of hepatocellular carcinoma: a systematic review and meta-analysis publication-title: Hepatol Int contributor: fullname: Ijzermans – volume: 249 start-page: 53 year: 2000 ident: 36 article-title: GP73, a novel Golgi-localized protein upregulated by viral infection publication-title: Gene doi: 10.1016/S0378-1119(00)00136-0 contributor: fullname: Fimmel – volume: 19 start-page: 1193 year: 2013 ident: 7 article-title: Management of small hepatocellular carcinoma in cirrhosis: Focus on portal hypertension publication-title: World J Gastroenterol doi: 10.3748/wjg.v19.i8.1193 contributor: fullname: Villanueva – volume: 2014 start-page: e88225 issue: 9 ident: 23 article-title: Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy publication-title: PLoS One contributor: fullname: Mitchell – volume: 2005 start-page: 431 issue: 46 ident: 45 article-title: Artificial neural network models for prediction of acute coronary syndromes using clinical data from the time of presentation publication-title: Ann Emerg Med contributor: fullname: Kennedy – volume: 10 start-page: 46 year: 2010 ident: 33 article-title: A novel biomarker TERTmRNA is applicable for early detection of hepatoma publication-title: BMC Gastroenterology doi: 10.1186/1471-230X-10-46 contributor: fullname: Kudo – volume: 52 start-page: 776 year: 2007 ident: 39 article-title: Clinical evaluation of lens culinaris agglutinin-reactive alpha-fetoprotein and des-gammacarboxy prothrombin in histologically proven hepatocellular carcinoma in the United States publication-title: Dig Dis Sci doi: 10.1007/s10620-006-9541-2 contributor: fullname: Satomura – volume: 85 start-page: e837 year: 2012 ident: 9 article-title: Differentiation of early hepatocellular carcinoma from benign hepatocellular nodules on gadoxetic acid-enhanced MRI publication-title: Br J Radiol doi: 10.1259/bjr/13212920 contributor: fullname: Kim – volume: 2001 start-page: 105 issue: 16 ident: 32 article-title: Clinical evaluation of lentil lectin-reactive alpha-fetoprotein-L3 in histology proven hepatocellular carcinoma publication-title: Int J Bio Markers contributor: fullname: Satomura – volume: 197 start-page: 58 year: 2011 ident: 11 article-title: Evolution of hypointense hepatocellular nodules observed only in the hepatobiliary phase of gadoxetate disodium-enhanced MRI publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.10.5390 contributor: fullname: Ishikawa – start-page: 5358615 year: 2017 ident: 30 article-title: The Clinical Values of Serum Markers in the Early Prediction of Hepatocellular Carcinoma publication-title: Biomed Res Int contributor: fullname: Mao – volume: 127 start-page: S108 year: 2004 ident: 12 article-title: Alpha fetoprotein and ultrasonography screening for hepatocellular carcinoma publication-title: Gastroenterology doi: 10.1053/j.gastro.2004.09.023 contributor: fullname: Tinessa – volume: 55 start-page: 74 year: 2005 ident: 1 article-title: Global cancer statistics, 2002 publication-title: CA Cancer J Clin doi: 10.3322/canjclin.55.2.74 contributor: fullname: Pisani – volume: 2 start-page: 1353 year: 1985 ident: 15 article-title: Fucosylated alpha-fetoprotein as marker of early hepatocellular carcinoma publication-title: Lancet contributor: fullname: Ichida – ident: 49 – volume: 102 start-page: 363 year: 2011 ident: 41 article-title: Diagnostic and prognostic value of alpha-fetoprotein, des-γ-carboxy prothrombin and squamous cell carcinoma antigen immunoglobulin M complexes in hepatocellular carcinoma publication-title: Minerva Med contributor: fullname: Di Carlo – volume: 2011 start-page: 1923 issue: 129 ident: 35 article-title: Serological AFP/Golgi protein 73 could be a new diagnostic parameter of hepatic diseases publication-title: Int J Cancer contributor: fullname: Tian – volume: 2015 start-page: 123 issue: 9 ident: 4 article-title: Alpha-fetoprotein-L3 and Golgi protein 73 may serve as candidate biomarkers for diagnosing alpha-fetoprotein-negative hepatocellular carcinoma publication-title: OncoTargets and Therapy contributor: fullname: Xu – volume: 2011 start-page: 1020 issue: 53 ident: 8 article-title: Management of Hepatocellular Carcinoma: An Update publication-title: Hepatology contributor: fullname: Morris – volume: 2009 start-page: 1602 issue: 49 ident: 26 article-title: Golgi phosphoprotein2 (GOLPH2) expression in liver tumors and its value as a serum marker in hepatocellular carcinomas publication-title: Hepatology contributor: fullname: Neuhaus – volume: 362 start-page: 1907 year: 2003 ident: 2 article-title: Hepatocellular carcinoma publication-title: Lancet doi: 10.1016/S0140-6736(03)14964-1 contributor: fullname: Bruix – volume: 2009 start-page: 1485 issue: 27 ident: 5 article-title: Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005 publication-title: J Clin Oncol contributor: fullname: Reichman – volume: 27 start-page: 339 year: 2009 ident: 18 article-title: GP73, a resident Golgi glycoprotein, is sensibility and specificity for hepatocellular carcinoma of diagnosis in a hepatitis B-endemic Asian population publication-title: Med Oncol contributor: fullname: Miao – ident: 48 – volume: 2008 start-page: 544 issue: 55 ident: 27 article-title: Clinical significance of Serum HGF and c-Met expression in tumor tissue for evaluation of properties and treatment of hepatocellular carcinoma publication-title: Hepatogastroenterology contributor: fullname: Goshima – volume: 2010 start-page: 297 issue: 10 ident: 29 article-title: Micromarkers: MiRNAs in cancer diagnosis and prognosis publication-title: Expert Rev Mol Diagn contributor: fullname: Negrini – volume: 61 start-page: 362 year: 2000 ident: 3 article-title: Hepatitis B: an important public health issue publication-title: J Med Virol doi: 10.1002/1096-9071(200007)61:3<362::AID-JMV14>3.0.CO;2-I contributor: fullname: Maddrey – volume: 2004 start-page: 334 issue: 86 ident: 20 article-title: Artificial intelligence in medicine publication-title: Ann R Coll Surg Engl contributor: fullname: Drew – volume: 35 start-page: 1431 year: 2002 ident: 38 article-title: Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease publication-title: Hepatology doi: 10.1053/jhep.2002.32525 contributor: fullname: Fimmel – volume: 2011 start-page: 1051 issue: 41 ident: 47 article-title: Prediction of metabolic syndrome using artificial neural network system based on clinical data including insulin resistance index and serum adiponectin publication-title: Comput Biol Med contributor: fullname: Saito – volume: 38 start-page: 210 year: 2004 ident: 50 article-title: Guideline of prevention and treatment of hepatitis C. [Article in Chinese] publication-title: Zhonghua Yu Fang Yi Xue Za Zhi contributor: fullname: Hepatotogy Branch, Infectious and Parasitology branch, Chinese Medical Association – volume: 1999 start-page: 650 issue: 94 ident: 14 article-title: Serumdes-gamma-carboxy prothrombin levels determined by a new generation of sensitive immunoassays in patients with small-sized hepatocellular carcinoma publication-title: Am J Gastroenterol contributor: fullname: Ohnishi – volume: 2007 start-page: 1046 issue: 19 ident: 19 article-title: Introduction to artificial neural networks publication-title: Eur J Gastroenterol Hepatol contributor: fullname: Buscema – volume: 53 start-page: 5419 year: 1993 ident: 16 article-title: A collaborative study for the evaluation of lectin-reactive alphafetoprotein in early detection of hepatocellular carcinoma publication-title: Cancer Res contributor: fullname: Hirai – volume: 2008 start-page: 249 issue: 8 ident: 46 article-title: Predicting coronary artery disease using different artificial neural network models publication-title: Anadolu Kardiyol Derg contributor: fullname: Barutçu – volume: 2009 start-page: 1301 issue: 15 ident: 31 article-title: Diagnosis of hepatocellular carcinoma publication-title: World J Gastroenterol contributor: fullname: Taylor-Robinson – volume: 197 start-page: W44 year: 2011 ident: 10 article-title: Differentiation of hepatic hyperintense lesions seen on gadoxetic acid-enhanced hepatobiliary phase MRI publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.10.5845 contributor: fullname: Kim – volume: 2017 start-page: e6090 issue: 96 ident: 24 article-title: An artificial neural network prediction model of congenital heart disease based on risk factors: A hospital-based case-control study publication-title: Medicine (Baltimore) contributor: fullname: Fang – volume: 2015 start-page: e0145395 issue: 10 ident: 22 article-title: Neural Network Prediction of ICU Length of Stay Following Cardiac Surgery Based on Pre-Incision Variables publication-title: PLoS One contributor: fullname: Inchiosa – volume: 2009 start-page: 1403 issue: 100 ident: 25 article-title: Glypican-3 expression is correlated with poor prognosis in hepatocellular carcinoma publication-title: Cancer Sci contributor: fullname: Nakatsura – volume: 2013 start-page: 270 issue: 8 ident: 21 article-title: Back propagation artificial neural network for community Alzheimer's disease screening in China publication-title: Neural Regen Res contributor: fullname: Yu – volume: 2004 start-page: 1087 issue: 99 ident: 37 article-title: Disease- and cell-specific expression of GP73 in human liver disease publication-title: Am J Gastroenterol contributor: fullname: Fimmel – volume: 85 start-page: 81 year: 2008 ident: 28 article-title: Albumin mRNA in plasma predicts post-transplant recurrence of patients with hepatocellular carcinoma publication-title: Transplantation doi: 10.1097/01.tp.0000298003.88530.11 contributor: fullname: Lo – volume: 138 start-page: 493 year: 2010 ident: 42 article-title: Des-gamma-carboxy prothrombin and alphafetoprotein as biomarkers for the early detection of hepatocellular carcinoma publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.10.031 contributor: fullname: Dienstag – volume: 1984 start-page: 1427 issue: 310 ident: 13 article-title: Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma publication-title: N Eng J Med contributor: fullname: Furie – volume: 63 start-page: 30 year: 2013 ident: 6 article-title: Cancer statistics publication-title: CA Cancer J Clin contributor: fullname: Jemal – volume: 2012 start-page: 870 issue: 4 ident: 51 article-title: Comparison between Multi-Layer Perceptron and Radial Basis Function Networks for Sediment Load Estimation in a Tropical Watershed publication-title: J Water Res Prot contributor: fullname: Balasundram – volume: 2007 start-page: 79 issue: 3 ident: 40 article-title: Risk factors for hepatocellular carcinoma may impair the performance of biomarkers: a comparison of AFP, DCP, and AFP-L3 publication-title: Cancer Biomark contributor: fullname: Marrero – volume: 43 start-page: 1007 year: 2005 ident: 17 article-title: GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma publication-title: J Hepatol doi: 10.1016/j.jhep.2005.05.028 contributor: fullname: Block – volume: 2013 start-page: e70571 issue: 8 ident: 44 article-title: Comparison of prediction model for cardiovascular autonomic dysfunction using artificial neural network and logistic regression analysis publication-title: PLoS One contributor: fullname: Zhou – volume: 2010 start-page: 722 issue: 33 ident: 43 article-title: Evaluating the risk of hypertension using an artificial neural network method in rural residents over the age of 35 years in a Chinese area publication-title: Hypertens Res contributor: fullname: Nie |
SSID | ssj0000547829 |
Score | 2.3035722 |
Snippet | More than 70% of hepatocellular carcinoma (HCC) cases develop as a consequence of liver cirrhosis (LC). Here we have evaluated the diagnostic potential of four... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 80521 |
SubjectTerms | Research Paper |
SummonAdditionalLinks | – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKuXBBIL6WAjISJ1SXJI6_DgghRKkQ4sRKvUV27HRX2o3pJiu1Pwtx64_ob-qMky1s6YFTZHnsSB6P_Zw8vyHkjRC6DoILZoTyrGwg5owLJWu8CjrTphQ-qX1-l0fT8uuxON4hm_RW4wB2tx7tMJ_UdLU4ODs9_wAB_x4DXktevIuoY5CI0wcAWIy-Q-4WeBMImXwj2h-kvkvYD834b_PWltu70z-Q8yZz8q-t6PABuT9iSPpxcPpDshPaR-QCi4McBEWRyvRIFG-ast10FOApDahnTP3Ar5t3NDZ0BhtSH_EDPjJSaY3Jhdq4tBQp8ScUpuh6SRfILUrml79YE_qY9B3m7f6NMvvG96kPHbv8zaAnF8_OKVbNVnHp0Ny2nn6Ji5M5HVtQxR-T6eHnH5-O2JiYgdWFlj3zvgjOCwvYTxtf2Mxpb4PJHWrnKBe8MjLUpVFgASekzGe8sUHmTnlb-trxJ2S3jW14RqjQTjXc58qhELyUpra-thmH_so81PmEvN04pPo56G9UeG5B71V_vFcl703I643LKogSHDnbhrjuoFriLXHB1YQ8HVx43V0B6z2HdW1C1JZzrw1QgXu7pp3PkhI3oGGAP-r5f7x3j9wrEBEg90C-ILv9ah1eAp7p3as0S68AOcYBiA priority: 102 providerName: Scholars Portal |
Title | Artificial neural network models for early diagnosis of hepatocellular carcinoma using serum levels of α-fetoprotein, α-fetoprotein-L3, des-γ-carboxy prothrombin, and Golgi protein 73 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29113322 https://search.proquest.com/docview/1961852537 https://pubmed.ncbi.nlm.nih.gov/PMC5655217 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbZnHopLX1tH0GFnkq0a1uWZR1LaBJKU3poYG9GL2cNu1bIeqH5WaG3_oj8ps7IdppNb73YCI2E8TdiRvanbwj5IERpveCCKSEdy2tYc8r4nNVO-jIpVS5cVPv8Vpye518WYrFHxHgWJpL2rWlm7Wo9a5tl5FZeru185InNv58dQRICUUfOJ2QCDnpvi94LeucQ9dTwB7MseDYPqHMQidUzSGgU1ujLYJFznmW74eifHPMhVfJe7Dl-Qh4PSSP91D_cU7Ln22fkNzZ7_QeKqpTxFjndNJa32VDIR6lHAWPqekJds6GhpkuIQF3AL_ZIQaUWqwm1Ya0pcuAvKPjkdk1XSCaK5rc3rPZdiIIOTXv4oM2-8kPq_Ibd_mIwkwk_ryl2La_C2qC5bh09CauLhg4jqOTPyfnx5x9Hp2yoxMBsVhYdcy7zxgkNyV6pXKYTUzrtVWpQLEca76QqvM2VBAvYEiUu4bX2RWqk07mzhr8g-21o_StCRWlkzV0qDSq_F4Wy2lmdcJgvT71Np-TjCEh12QtuVLhRQSCrv0BWEcgpeT9CVsGywDenWx-2G-gu8Fi44HJKXvYQ3k03Yj8lcgfcOwOU3N7tAU-M0tuD573-75FvyKMMEwOkIBRvyX53tfXvIK3pzAGZnCxSuJ7l5UF06T9LzQUk |
link.rule.ids | 230,315,730,783,787,888,2228,24331,27937,27938,53805,53807 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcCFh3gtTyNxQnU2ieM4PqKKssC24tCi3qL4kW7EJqm62Qv_CnHjR_Q3MeMkpbuc4BRZnlhx_I1mLH_-hpA3QmTGCS6YEtKypASfU9olrLTSZWGmEmG92udROjtJPp2K0x0ixrswnrRvdBU0yzpoqoXnVp7XZjryxKZfDvchCYGoI6c3yE3w11Bc26T3kt4JxD01nGFmKY-nLSodeGp1ACmNwip9Mbg553G8GZD-yjK3yZLXos_BXfJ1_O6edPItWHc6MN-3JB3_eWL3yJ0hH6Xv-u77ZMc1D8gvbPbSEhQFL_3D08Wpr5yzopDqUofayNT2XL1qRduSLiC4dS0eBiC7lRosVNS0dUGRXn9GAe7rmi6Rp-TNL3-w0nWt14qomr2tNpvzPWrdil3-ZDCShqlT7FpctLVG86Kx9EO7PKvo8AaV_CE5OXh_vD9jQ5EHZuIs7Zi1sdNWFJBHZsrGRagzWzgVadThkdpZqVJnEiXBAnZboQ15Wbg00tIWiTWaPyK7Tdu4J4SKTMuS20hqFJVPU2UKa4qQw3hJ5Ew0IW_Hlc7Pey2PHPdAiJD8D0Jyj5AJeT1iIQePwz9XNK5dr6A7xRvngssJedxj42q4EVQTIjdQc2WAat6bPYAFr-o9rP3T_37zFbk1Oz6c5_OPR5-fkdsx5h_IdEifk93uYu1eQPbU6ZfeV34DV-olTw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgSIgND_HotDyMxArVeTmO4yUqDAVK1QWVKjaRX-lETJJRJ7PhrxA7PqLfhK-TlJlh11Vk-dqK43N1r-WTcxF6w1iuLaOMCMYNSUvnc0LZlJSG2zzKRcqMV_s8yY7O0s_n7Hyt1Jcn7WtVBc28Dppq5rmVi1qHI08sPP166JIQF3V4uDBleBvdYSCavnZQ72W9Uxf7xHCPmWc0CVtQO_D06sClNQIq9SXO1SlNks2g9F-muU2YXItA0wfo-_juPfHkR7DqVKB_bsk63mhxD9H9IS_F73qTR-iWbR6jP9DsJSYwCF_6h6eNY19BZ4ldyostaCRj03P2qiVuSzxzQa5r4VIAWK5YQ8Gipq0lBpr9BXawX9V4Dnwlb371i5S2a71mRNUcbLXJMT3Axi7J1W_iZlJu-Ri6ZpdtrcBcNgZ_bOcXFR5GYE6foLPph2-HR2Qo9kB0kmcdMSaxyjDp8slcmERGKjfSiliBHg9X1nCRWZ0K7izcqSsyES2lzWLFjUyNVvQp2mnaxu4izHLFS2pirkBcPsuElkbLiLr50tjqeILejrtdLHpNjwLOQoCS4h9KCo-SCXo94qFwngdfTja2XS1ddwZ_njPKJ-hZj4_r6UZgTRDfQM61Aah6b_Y4PHh172H_92488hW6e_p-Whx_Ovmyj-4lkIYA4SF7jna6y5V94ZKoTr307vIXJi0nzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+models+for+early+diagnosis+of+hepatocellular+carcinoma+using+serum+levels+of+%CE%B1-fetoprotein%2C+%CE%B1-fetoprotein-L3%2C+des-%CE%B3-carboxy+prothrombin%2C+and+Golgi+protein+73&rft.jtitle=Oncotarget&rft.au=Li%2C+Bo&rft.au=Li%2C+Boan&rft.au=Guo%2C+Tongsheng&rft.au=Sun%2C+Zhiqiang&rft.date=2017-10-06&rft.eissn=1949-2553&rft.volume=8&rft.issue=46&rft.spage=80521&rft.epage=80530&rft_id=info:doi/10.18632%2Foncotarget.19298&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-2553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-2553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-2553&client=summon |