Artificial neural network models for early diagnosis of hepatocellular carcinoma using serum levels of α-fetoprotein, α-fetoprotein-L3, des-γ-carboxy prothrombin, and Golgi protein 73

More than 70% of hepatocellular carcinoma (HCC) cases develop as a consequence of liver cirrhosis (LC). Here we have evaluated the diagnostic potential of four serum biomarkers, and developed models for HCC diagnosis and differentiation from LC patients. Serum levels of α-fetoprotein (AFP), AFP-L3,...

Full description

Saved in:
Bibliographic Details
Published inOncotarget Vol. 8; no. 46; pp. 80521 - 80530
Main Authors Li, Bo, Li, Boan, Guo, Tongsheng, Sun, Zhiqiang, Li, Xiaohan, Li, Xiaoxi, Chen, Lin, Zhao, Jing, Mao, Yuanli
Format Journal Article
LanguageEnglish
Published United States Impact Journals LLC 06.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:More than 70% of hepatocellular carcinoma (HCC) cases develop as a consequence of liver cirrhosis (LC). Here we have evaluated the diagnostic potential of four serum biomarkers, and developed models for HCC diagnosis and differentiation from LC patients. Serum levels of α-fetoprotein (AFP), AFP-L3, des-γ-carboxy prothrombin (DCP), and Golgi protein 73 (GP73) were analyzed in 114 advanced HCC patients, 81 early stage HCC patients, and 152 LC patients. Multilayer perceptron (MLP) and radial basis function (RBF) neural networks were used to construct the diagnostic models. Using all stages, HCC diagnostic models had a higher sensitivity (>70%) than the individual serum biomarkers, whereas only early stage HCC diagnostic models had a higher specificity (>80%). The early stage HCC diagnostic models could not be used as HCC screening tools due to their low sensitivity (about 40%). These results suggest that a combination of the two models might be used as a screening tool to distinguish early stage HCC patients from LC patients, thus improving prevention and treatment of HCC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.19298