Non parametric regression analysis for longitudinal data with time-depending autoregressive error process

This paper considers a non parametric longitudinal model, where the within-subject correlation structure is represented by a time-depending autoregressive error process. An initial estimator without taking into account the within-subject correlation is obtained to fit the time-depending autoregressi...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 47; no. 18; pp. 4503 - 4533
Main Authors Hang, Yin, Liu, Shu
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 17.09.2018
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper considers a non parametric longitudinal model, where the within-subject correlation structure is represented by a time-depending autoregressive error process. An initial estimator without taking into account the within-subject correlation is obtained to fit the time-depending autoregressive error process. With the initial estimator, we construct a two-stage local linear estimator of the mean function. According to the asymptotic normality of the initial and two-stage estimators, it is discovered that the two-stage estimator has a smaller asymptotic variance. The simulation results show us that the two-stage estimation has some good properties. The analysis of a data set demonstrates its application.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0361-0926
1532-415X
DOI:10.1080/03610926.2017.1377251