Histidine-rich branched peptides as Cu(II) and Zn(II) chelators with potential therapeutic application in Alzheimer's disease

Two histidine-rich branched peptides with one lysine as a branching unit have been designed and synthesized by solid-phase peptide synthesis. Their complex formation with Cu(II) and Zn(II) as well as their ability to attenuate the metal-ion induced amyloid aggregation has been characterized. Both pe...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 41; no. 6; pp. 1713 - 1726
Main Authors Lakatos, Andrea, Gyurcsik, Béla, Nagy, Nóra V, Csendes, Zita, Wéber, Edit, Fülöp, Lívia, Kiss, Tamás
Format Journal Article
LanguageEnglish
Published England 14.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two histidine-rich branched peptides with one lysine as a branching unit have been designed and synthesized by solid-phase peptide synthesis. Their complex formation with Cu(II) and Zn(II) as well as their ability to attenuate the metal-ion induced amyloid aggregation has been characterized. Both peptides can keep Cu(II) and Zn(II) in complexed forms at pH 7.4 and can bind two equivalents of metal ions in solutions with excess metal. The stoichiometry, stability and structure of the complexes formed have been determined by pH potentiometry, UV-Vis spectrophotometry, circular dichroism, EPR and NMR spectroscopy and ESI-MS. Both mono- and bimetallic species have been detected over the whole pH range studied. The basic binding mode is either a tridentate {N(amino), N(amide), N(im)} or a histamine-type of coordination which is complemented by the binding of far imidazole or amino groups leading to macrochelate formation. The peptides were able to prevent Cu(II)-induced Aβ(1-40) aggregation but could not effectively compete for Zn(II) in vitro. Our results suggest that branched peptides containing potential metal-binding sites may be suitable metal chelators for reducing the risk of amyloid plaque formation in Alzheimer's disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1477-9226
1477-9234
DOI:10.1039/c1dt10989h