Orthogonal beam ballistic backscatter stimulated Raman microscopy

When the axial gain length of a stimulated Raman microscope is less than about 40% of the emission wavelength significant dipole-like ballistic backscatter will occur. Here we analyze a scanning microscope configured with orthogonal water dipping pump and probe objectives that satisfies this criteri...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 27; no. 16; pp. 22770 - 22786
Main Author Frankel, Robert D
Format Journal Article
LanguageEnglish
Published United States 05.08.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:When the axial gain length of a stimulated Raman microscope is less than about 40% of the emission wavelength significant dipole-like ballistic backscatter will occur. Here we analyze a scanning microscope configured with orthogonal water dipping pump and probe objectives that satisfies this criterion. The pump beam focus may be a Gaussian spot or a droplet Bessel beam which minimizes the secondary Bessel beam lobes and provides multiple simultaneous pump focal spot regions. Radial and linearly polarized pump beams enable backscattered polarized signals along both transverse axes of the probe beam. Low level Mie backscatter is the primary photon noise source which should enable rapid sub-wavelength resolution 3-dimensional imaging of label-free Raman contrast for in-vivo pathology, as well as, imaging physiologic concentrations of Raman labelled metabolites and drugs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.022770