Distribution-free, Risk-controlling Prediction Sets

While improving prediction accuracy has been the focus of machine learning in recent years, this alone does not suffice for reliable decision-making. Deploying learning systems in consequential settings also requires calibrating and communicating the uncertainty of predictions. To convey instance-wi...

Full description

Saved in:
Bibliographic Details
Published inJournal of the ACM Vol. 68; no. 6; pp. 1 - 34
Main Authors Bates, Stephen, Angelopoulos, Anastasios, Lei, Lihua, Malik, Jitendra, Jordan, Michael
Format Journal Article
LanguageEnglish
Published New York Association for Computing Machinery 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:While improving prediction accuracy has been the focus of machine learning in recent years, this alone does not suffice for reliable decision-making. Deploying learning systems in consequential settings also requires calibrating and communicating the uncertainty of predictions. To convey instance-wise uncertainty for prediction tasks, we show how to generate set-valued predictions from a black-box predictor that controls the expected loss on future test points at a user-specified level. Our approach provides explicit finite-sample guarantees for any dataset by using a holdout set to calibrate the size of the prediction sets. This framework enables simple, distribution-free, rigorous error control for many tasks, and we demonstrate it in five large-scale machine learning problems: (1) classification problems where some mistakes are more costly than others; (2) multi-label classification, where each observation has multiple associated labels; (3) classification problems where the labels have a hierarchical structure; (4) image segmentation, where we wish to predict a set of pixels containing an object of interest; and (5) protein structure prediction. Last, we discuss extensions to uncertainty quantification for ranking, metric learning, and distributionally robust learning.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-5411
1557-735X
DOI:10.1145/3478535