Distribution-free, Risk-controlling Prediction Sets
While improving prediction accuracy has been the focus of machine learning in recent years, this alone does not suffice for reliable decision-making. Deploying learning systems in consequential settings also requires calibrating and communicating the uncertainty of predictions. To convey instance-wi...
Saved in:
Published in | Journal of the ACM Vol. 68; no. 6; pp. 1 - 34 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Association for Computing Machinery
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | While improving prediction accuracy has been the focus of machine learning in recent years, this alone does not suffice for reliable decision-making. Deploying learning systems in consequential settings also requires calibrating and communicating the uncertainty of predictions. To convey instance-wise uncertainty for prediction tasks, we show how to generate set-valued predictions from a black-box predictor that controls the expected loss on future test points at a user-specified level. Our approach provides explicit finite-sample guarantees for any dataset by using a holdout set to calibrate the size of the prediction sets. This framework enables simple, distribution-free, rigorous error control for many tasks, and we demonstrate it in five large-scale machine learning problems: (1) classification problems where some mistakes are more costly than others; (2) multi-label classification, where each observation has multiple associated labels; (3) classification problems where the labels have a hierarchical structure; (4) image segmentation, where we wish to predict a set of pixels containing an object of interest; and (5) protein structure prediction. Last, we discuss extensions to uncertainty quantification for ranking, metric learning, and distributionally robust learning. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0004-5411 1557-735X |
DOI: | 10.1145/3478535 |